

A271522


Decimal expansion of the negated imaginary part of the derivative of the Riemann function zeta(z) at z=i, the imaginary unit.


2



5, 0, 6, 8, 4, 7, 0, 1, 7, 1, 6, 7, 5, 6, 9, 0, 8, 1, 9, 2, 3, 6, 7, 7, 7, 2, 0, 3, 4, 7, 5, 1, 9, 6, 7, 5, 2, 6, 2, 0, 0, 3, 5, 0, 7, 0, 7, 4, 0, 1, 0, 7, 5, 1, 2, 3, 4, 2, 1, 5, 2, 3, 3, 6, 1, 7, 0, 8, 3, 3, 8, 1, 6, 3, 9, 4, 1, 5, 7, 4, 9, 9, 4, 9, 6, 3, 7, 9, 2, 6, 3, 9, 2, 3, 4, 3, 5, 5, 9, 0, 3, 8, 7, 4, 5
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The corresponding real part of zeta'(i) is in A271521.


LINKS

Stanislav Sykora, Table of n, a(n) for n = 0..2000
Eric Weisstein's World of Mathematics, Riemann Zeta Function


EXAMPLE

0.5068470171675690819236777203475196752620035070740107512342152336170...


MATHEMATICA

RealDigits[Im[Zeta'[I]], 10, 120][[1]] (* Vaclav Kotesovec, Apr 10 2016 *)


PROG

(PARI) imag(zeta'(I)) \\ With realprecision=2100, it takes a few minutes


CROSSREFS

Cf. A084448 (zeta'(1)), A179311 (real(zeta(i))), A179836 (imag(zeta(i))), A271521 (real(zeta'(i))).
Sequence in context: A166126 A265011 A200419 * A069206 A145091 A091685
Adjacent sequences: A271519 A271520 A271521 * A271523 A271524 A271525


KEYWORD

nonn,cons


AUTHOR

Stanislav Sykora, Apr 09 2016


STATUS

approved



