This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271385 a(n) = Product_{k=0..floor((n - 1)/2)} (n - 2*k)^(n - 2*k). 1
 1, 1, 4, 27, 1024, 84375, 47775744, 69486440625, 801543976648704, 26920470805806965625, 8015439766487040000000000, 7680724499239438722449399746875, 71466466094944065310414602240000000000, 2326300251412874049290421829657963142035959375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Double hyperfactorial (by analogy with the double factorial). LINKS Ilya Gutkovskiy, Table of n, a(n) for n = 0..33 Ilya Gutkovskiy, Double hyperfactorial Eric Weisstein, Double Factorial Eric Weisstein's World of Mathematics, Hyperfactorial FORMULA a(n) = n^n*(n - 2)^(n - 2)*...*5^5*3^3*1^1, for n>0 odd; a(n) = n^n*(n - 2)^(n - 2)*...*6^6*4^4*2^2, for n>0 even; a(n) = 1, for n = 0. a(n) = n^n*a(n-2), a(0)=1, a(1)=1. a(n) = (1/a(n-1))*sqrt(a(2n)/2^(n*(n+1))). a(n)*a(n-1) = A002109(n). a(n)*a(n-1)*sqrt(a(2n))/((n!)^n*sqrt(2^(n*(n+1)))) = A168510(n). EXAMPLE a(0) = 1; a(1) = 1^1 = 1; a(2) = 2^2 = 4; a(3) = 1^1*3^3 = 27; a(4) = 2^2*4^4 = 1024; a(5) = 1^1*3^3*5^5 = 84375; a(6) = 2^2*4^4*6^6 = 47775744; a(7) = 1^1*3^3*5^5*7^7 = 69486440625; a(8) = 2^2*4^4*6^6*8^8 = 801543976648704, etc. MATHEMATICA Table[Product[(n - 2 k)^(n - 2 k), {k, 0, Floor[(n - 1)/2]}], {n, 0, 13}] RecurrenceTable[{a[0] == 1, a[1] == 1, a[n] == n^n a[n - 2]}, a, {n, 13}] PROG (PARI) a(n) = prod(k=0, (n-1)\2, (n-2*k)^(n-2*k)); \\ Michel Marcus, Apr 07 2016 CROSSREFS Cf. A002109, A006882, A168510. Sequence in context: A068327 A066842 A133032 * A110763 A066352 A249105 Adjacent sequences:  A271382 A271383 A271384 * A271386 A271387 A271388 KEYWORD nonn,easy AUTHOR Ilya Gutkovskiy, Apr 06 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 06:15 EST 2019. Contains 319374 sequences. (Running on oeis4.)