This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271388 a(n) = 4*a(n-1) + a(n-2) - n for n>1, with  a(0)=0, a(1)=1. 0
 0, 1, 2, 6, 22, 89, 372, 1570, 6644, 28137, 119182, 504854, 2138586, 9059185, 38375312, 162560418, 688616968, 2917028273, 12356730042, 52343948422, 221732523710, 939274043241, 3978828696652, 16854588829826, 71397184015932, 302443324893529, 1281170483590022, 5427125259253590, 22989671520604354 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Index entries for linear recurrences with constant coefficients, signature (6,-8,2,1) FORMULA G.f.: x*(1 - 4*x + 2*x^2)/((1 - x)^2*(1 - 4*x - x^2)). E.g.f.: (1/80)*(10*exp(x)*(2*x + 3) - 3*(5 + 3*sqrt(5))*exp((2 - sqrt(5))*x) + 3*(3*sqrt(5) - 5)*exp((2 + sqrt(5))*x)). a(n) = 6*a(n-1) - 8*a(n-2) + 2*a(n-3) + a(n-4). a(n) = (1/80)*(20*n - 3*(5 + 3*sqrt(5))*(2 - sqrt(5))^n + 3*(3*sqrt(5) - 5)*(2 + sqrt(5))^n + 30). Lim_{n->infinity} a(n + 1)/a(n) = 2 + sqrt(5) = phi^3 = A098317, where phi is the golden ratio (A001622). 8*a(n) = 2*n+3+3*A033887(n-1). - R. J. Mathar, Mar 12 2017 MATHEMATICA RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == 4 a[n - 1] + a[n - 2] - n}, a, {n, 28}] LinearRecurrence[{6, -8, 2, 1}, {0, 1, 2, 6}, 29] PROG (PARI) x='x+O('x^99); concat(0, Vec(x*(1-4*x+2*x^2)/((1-x)^2*(1-4*x-x^2)))) \\ Altug Alkan, Apr 06 2016 CROSSREFS Cf. A030119, A048776, A098317. Sequence in context: A150266 A165522 A150267 * A165540 A111053 A165541 Adjacent sequences:  A271385 A271386 A271387 * A271389 A271390 A271391 KEYWORD nonn,easy AUTHOR Ilya Gutkovskiy, Apr 06 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 15:20 EDT 2018. Contains 316236 sequences. (Running on oeis4.)