login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271382
Least k with precisely n partitions k = x + y satisfying d(k) = d(x) + d(y), where d(k) is the number of divisors of k.
2
2, 14, 10, 26, 44, 45, 126, 68, 99, 104, 162, 117, 98, 124, 232, 164, 148, 200, 260, 333, 231, 244, 248, 297, 273, 284, 315, 406, 332, 345, 385, 430, 344, 399, 388, 436, 429, 488, 465, 495, 472, 525, 561, 555, 621, 556, 632, 604, 652, 712, 536, 693, 735, 675
OFFSET
1,1
LINKS
EXAMPLE
d(10) = d(1) + d(9) = d(3) + d(7) = d(5) + d(5) = 4 and 10 is the least number with 3 partitions of two numbers with this property: therefore a(3) = 10;
d(126) = d(21) + d(105) = d(22) + d(104) = d(28) + d(98) = d(38) + d(33) = d(40) + d(86) = d(50) + d(76) = d(63) + d(63) = 12 and 126 is the least number with 7 partitions of two numbers with this property: therefore a(7) = 126.
MAPLE
with(numtheory): P:=proc(q) local a, h, k, n; for h from 1 to q do for n from 2*h to q do
a:=0; for k from 1 to trunc(n/2) do if tau(n)=tau(k)+tau(n-k) then a:=a+1; fi; od;
if a=h then print(n); break; fi; od; od; end: P(10^6);
MATHEMATICA
nn = 10^3; Table[SelectFirst[Range@ nn, Function[k, With[{e = DivisorSigma[0, k]}, Count[Transpose@ {Range[k - 1, Ceiling[k/2], -1], Range@ Floor[k/2]}, x_ /; Total@ DivisorSigma[0, x] == e] == n]]], {n, 54}] (* Michael De Vlieger, Apr 06 2016 *)
PROG
(PARI) isok(k, n) = {my(nb = 0, tau = numdiv(k)); for (j=1, k\2, if (numdiv(j)+numdiv(k-j) == tau, nb++); if (nb > n, return (0)); ); nb == n; }
a(n) = {k=2; while (!isok(k, n), k++); k; } \\ Michel Marcus, Apr 07 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Apr 06 2016
STATUS
approved