login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271329
a(n) is the sum of the divisors of the n-th sphenic number (A007304).
1
72, 96, 144, 144, 168, 216, 192, 216, 240, 252, 288, 288, 288, 324, 360, 336, 384, 360, 336, 456, 432, 384, 432, 504, 432, 528, 480, 448, 576, 480, 504, 540, 576, 648, 576, 576, 720, 576, 744, 684, 648, 576, 640, 816, 720, 756, 720, 864, 672, 792, 768, 720
OFFSET
1,1
LINKS
FORMULA
a(n) = A000203(A007304(n)). - Omar E. Pol, Dec 08 2019
EXAMPLE
a(1) = 72 because the divisors of A007304(1) = 30 are {1,2,3,5,6,10,15,30}, the sum of which is 72.
MATHEMATICA
DivisorSigma[1, #]&/@With[{upto=500}, Sort[Select[Times@@@Subsets[ Prime[ Range[ Ceiling[ upto/6]]], {3}], #<=upto&]]] (* Harvey P. Dale, May 30 2020 *)
PROG
(PARI)
L=List(); for(n=1, 1000, if(bigomega(n)==3 && omega(n)==3, listput(L, sum(k=1, 8, divisors(n)[k])))); Vec(L)
(Python)
from math import isqrt
from sympy import primepi, primerange, integer_nthroot, divisor_sigma
def A271329(n):
def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a, k in enumerate(primerange(integer_nthroot(x, 3)[0]+1), 1) for b, m in enumerate(primerange(k+1, isqrt(x//k)+1), a+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return divisor_sigma(bisection(f)) # Chai Wah Wu, Aug 30 2024
CROSSREFS
Sequence in context: A030025 A245213 A270308 * A307867 A099943 A118218
KEYWORD
nonn
AUTHOR
Colin Barker, Apr 04 2016
STATUS
approved