login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270952
T(n, k) is the number of k-element connected subposets of the n-th Boolean lattice, 0 <= k <= 2^n.
0
1, 1, 1, 2, 1, 1, 4, 5, 4, 1, 1, 8, 19, 42, 61, 56, 28, 8, 1, 1, 16, 65, 304, 1129, 3200, 6775, 10680, 12600, 11386, 8002, 4368, 1820, 560, 120, 16, 1, 1, 32, 211, 1890, 14935, 97470
OFFSET
0,4
COMMENTS
The n-th Boolean lattice is the set of all subsets of {1,2,...,n}, partially ordered by inclusion.
LINKS
Eric Weisstein's World of Mathematics, Boolean Algebra.
EXAMPLE
The triangle begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 1 1
1 1 2 1
2 1 4 5 4 1
3 1 8 19 42 61 56 28 8 1
4 1 16 65 304 1129 3200 6775 10680 12600 11386 8002 4368 1820 560 120
5 1 32 211 1890 14935 97470 ...
For T(2, 2) = 5: [{},{1}], [{},{2}], [{},{1,2}], [{1},{1,2}], [{2},{1,2}].
PROG
(Sage)
def ConnectedSubs(n): # Returns row n of T(n, k).
Bn = posets.BooleanLattice(n)
counts = [0]*(2^n+1)
for X in Subsets(range(2^n)):
if Bn.subposet(X).is_connected():
counts[len(X)] += 1
return counts
CROSSREFS
Columns: A000012 (k = 0, 2^n), A000079 (k = 1, 2^n - 1), A001047 (k = 3).
Sequence in context: A208061 A078047 A329689 * A143392 A090668 A307977
KEYWORD
nonn,more,tabf
AUTHOR
Danny Rorabaugh, Mar 26 2016
STATUS
approved