login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n, k) is the number of k-element connected subposets of the n-th Boolean lattice, 0 <= k <= 2^n.
0

%I #17 Apr 02 2016 05:01:16

%S 1,1,1,2,1,1,4,5,4,1,1,8,19,42,61,56,28,8,1,1,16,65,304,1129,3200,

%T 6775,10680,12600,11386,8002,4368,1820,560,120,16,1,1,32,211,1890,

%U 14935,97470

%N T(n, k) is the number of k-element connected subposets of the n-th Boolean lattice, 0 <= k <= 2^n.

%C The n-th Boolean lattice is the set of all subsets of {1,2,...,n}, partially ordered by inclusion.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BooleanAlgebra.html">Boolean Algebra</a>.

%e The triangle begins:

%e n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

%e 0 1 1

%e 1 1 2 1

%e 2 1 4 5 4 1

%e 3 1 8 19 42 61 56 28 8 1

%e 4 1 16 65 304 1129 3200 6775 10680 12600 11386 8002 4368 1820 560 120

%e 5 1 32 211 1890 14935 97470 ...

%e For T(2, 2) = 5: [{},{1}], [{},{2}], [{},{1,2}], [{1},{1,2}], [{2},{1,2}].

%o (Sage)

%o def ConnectedSubs(n): # Returns row n of T(n, k).

%o Bn = posets.BooleanLattice(n)

%o counts = [0]*(2^n+1)

%o for X in Subsets(range(2^n)):

%o if Bn.subposet(X).is_connected():

%o counts[len(X)] += 1

%o return counts

%Y Columns: A000012 (k = 0, 2^n), A000079 (k = 1, 2^n - 1), A001047 (k = 3).

%K nonn,more,tabf

%O 0,4

%A _Danny Rorabaugh_, Mar 26 2016