login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270800
Septic artiads: primes p congruent to 1 mod 14 for which all solutions of the congruence x^3 + x^2 - 2x - 1 == 0 (mod p) are 7th power residues.
7
14197, 21617, 23801, 24977, 25999, 34763, 37549, 41959, 42407, 45053, 45599, 54713, 55987, 56099, 60271, 61657, 63463, 66067, 72577, 75307, 76343, 76777, 79283, 83357, 88397, 90469, 91309, 99611, 107927, 111217, 111301, 111791, 124699, 126127, 131251, 132287
OFFSET
1,1
LINKS
E. Lehmer, Artiads characterized, J. Math. Anal. Appl. 15 1966 118-131. See page 126 (but beware errors).
E. Lehmer, Artiads characterized, J. Math. Anal. Appl. 15 1966 118-131 [annotated and corrected scanned copy]
PROG
(Sage)
def is_septic_artiad(n) :
if not (n % 14 == 1 and is_prime(n)) : return False
R.<t> = PolynomialRing(GF(n))
return all(r[0]^((n-1)//7) == 1 for r in (t^3 + t^2 - 2*t - 1).roots())
# Eric M. Schmidt, Apr 02 2016
CROSSREFS
Cf. A001583.
Sequence in context: A258532 A258525 A254917 * A271247 A212949 A205202
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 01 2016
EXTENSIONS
Definition added and sequence extended and corrected by Eric M. Schmidt, Apr 02 2016
STATUS
approved