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Almost a hundred years ago Lloyd Tanner [1, 2] constructed a table of i
what he called ““coordinates of the reciprocal factors” of primes p = 10n 4 1
in the field of fifth roots of unity o = exp (2#1/5).
These coordinates are nothing else but the coefficients of the familiar
Jacobi functicn imo
& ! with
R(x) = 2, x(s) x(s + 1), (i) a;
unn
where the character x(s) is defined by - the
nect
x(8) =olhds, - (5,90} =1, (2) alget
the index of s being taken with respect to some primitive root g. ;,00:
It is well known that =
give
R(x) R(ac™?) = p, (€) T
which accounts for the term “‘reciprocal factor.” n:p
When the Jacobi function is expanded in powers of « and normalized so gty
that the sum of the coefficients is — 1, so that
s !
R@)=2q0', 2= —1, (@)
i=0 i=0 ; T
|
then the ¢’s are Tanner’s coordinates. | root
In tabulating the ¢’s Tanner noticed that about twenty per cent of the throt
primes p = 10z - | are such that
i
1=¢=¢=¢ (mod}) ) |
f thea

He called these primes ‘“‘artiads,” presumably after the Greek word «prios
meaning “‘perfect of its kind,” but failed in his attempt to characterize such
primes.
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It is the purpose of this paper to prove that artiads are primes having the
Fibonacci root 6 = (1 + 4/5)/2 as a quintic residue, where 8 is taken as a
solution of the congruence x> — x — 1 = 0 (mod p).

This condition is then restated in terms of the divisibility by 5 of the
number w appearing in the representation of 16p by the Dickson form [3, 4]

16p = x? + 5002 + 5022 + 1250

xw=10—u® —4uv=(v—2u)P —52 x=1 (mod 5). (6)

We next show that the subset of artiads having 2 and « for quintic residues
satisfy the conditions

xd+a)=1 for i=0,1,234 ©)

imposed by Professor Vandiver on primes of the form 10n + 1 in connection
with a criterion for Fermat’s Last Theorem [5].

Since Professor Vandiver’s criterion is stated in general for eth roots of
unity, where e is an odd prime and p = ef - |, we can ask ourselves whether
the notion of an artiad can be generalized in such a way as to retain its con-
nection with Vandiver’s problem and with the eth power character of some
algebraic number which can be thought of as a generalization of the Fibonacci
root 6. We find that this can be done for e =7 where ¢ is replaced
by 2 cos 27/7, but that the analogy fails for e = i1 so that we are unable to
give a more general discussion.

The tools used here are those of cyclotomy for e a prime and the funda-
mental ideas and formulas will be found in the two Dickson papers cited
above and will be stated without proof.

1. CycrLoromy

Let p = ef + 1 be a prime, where e is also an odd prime. Let « be an eth
root of unity, « 7% 1. Let g be an primitive root of p. Then relations (1)
through (3) hold in general. If we now let

By T Oy (8)

then the Jacobi function can be written

e

R(x) = .21 a;d, where .il: a;=—1 (mod e). (9)
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It is well known that the a’s are connected with the cyclotomic numbers (7, ;)
giving the number of solutions of the congruence

\

gett - 1 = gteti (mod p). (10)

This relation can be written

e—1 N

a;—a,=‘§[<k,i-k> — (k,j — k). (11)
We shall also need
e—1

Y, (08 —aia;,;) =0  (i# —jor — k) (12)
=0

and .
e—1
ind (1 —of) = D j(i,/) (mode). (13)

i=1

The cyclotomic numbers themselves for e odd satisfy the relations

(7)) =(hi)=(e—1,j—14) (14)
and
e~1 e—1
g(o N=r—1, @o(m‘) =f  (fori #0). (15)

2. THECAsEe=§

In this case Eqgs. (14) reduce the 25 cyclotomic numbers (7, f) to seven
which are subject to conditions (15). These numbers can be taken as (0, k)
for k =0, 1, 2, 3,4 and (1, 2) and (1, 3). They are related to the a’s and to
the x, u, v, w of the quadratic form (6) by

5[(0, 1) — (0, 4)] = 2a; — a, + a; — 2a, = 5v

5[(0, 2) — (0, 3)] = a, + 2a, — 2a; — a; = 5u

5[(1,3) —(1,2)] =a, — a, — a; + a, = 5w. (16)
It follows from (16) that @, — ay = a, — a; = 2u — v (mod 5), so that

a, = a; (mod 5), a, = a; (mod 5), or w9v=2u (modS5) (17)
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implies that a, = a, = a3 = a, (mod 5), and hence by (8) that Tanner’s
condition (5) holds. Thus an artiad may be defined by either of the condi-
tions (17). It can also be characterized by:

A prime p is an artiad if and only if w = 0 (mod 5) in (6). (18)
This follows at once from the third condition in (17) and the the second
equation in (6). ,
We are now in a position to prove the following lemma
LemMa 1. If 0is aroot of x* — x — 1 = 0 (mod p), then
2ind0=a, —a,=a, —a3=2u —v (mod 5).
Proor. It is clear that 8 can be written § = — (x + of), so that
8 — («+at)2=(1 +ad)(1 +0%) = (1 —a?)(1 — /(1 —a?)(1 —o)
and hence
2ind @ = ind (1 — o) — i (1 — o) —ind (1 — o) +ind (1 —af).

Substituting for ind (1 — o) its value in terms of the cyclotomic numbers
from (13) we obtain :

2ind 6 = Zli[(l,j) —2,) = G.)) + @]

@, —ay=a, — Gy =2 — 0 (mod 5) (18)

I

i

by (14), (15), and (16).
Hence by (18) the condition that ind 6 =0 coincides with the condition
(17) for an artiad and gives our main theorem; namely,

THeOREM 1. A prime p is an artiad if and only if the roots of
x? — x — 1 = 0 (mod p) are quintic residues of p.

CoROLLARY. The density of artiads is twenty per cent. The 8 artiads less
than 1000 are

211, 281, 421, 461, 521, 691, 881, 991 (19) A 1593
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The observed densities are given in the following table:
7

Limit No. of artiads No. of primes Density

10000 60 306 .1961 Tanner,
100000 484 2387 .2028  Muskat
1000000 3929 19617 .2003 7094

CoROLLARY 2. The (p — 1)/5th term of the Fibonacci sequence
Fa=0, F=1  Fyz=F,+F,

is divisible by p if and only if p is an artiad [6).

Making use of condition (18) we can restate Theorem 1 in the form of a
criterion for the quintic character of 8 in line with the known [7] criteria for
the quintic character of 2 and 3; namely,

2 is a quintic residue of p if and only if w is a multiple of 4. 3 is a quintic -
residue of p if and only if x or w is a multiple of 9. 0 is a quintic residue of p if
and only if w is a multiple of 5.

The criterion for 5 to be a quintic residue of p takes a slightly different form;
namely [8],

5 is a quintic residue of p if and only if u = 2v (mod 5).

When this is combined with the criterion for 6, written in the form
v = 2u (mod 5), we have u = v =0 (mod 5) and hence by (6) we have
w = 0 (mod 25) so that

5 and 0 are both quintic residues of p if and only if w = 0 (mod 25).

We call such primes kyperartiads because it follows from (16) that

(0,1) = (0,4) (mod3),
0,2)=(0,3) (mod5), and (1,2)=(1,3) (mod25). (20)

This in turn implies by (15) that
(0,1)=(0,2)=(0,3)=(0,4)  (mod)5).
The eight hyperartiads less than 10000 are
, 5591, 6211, 6271, 8581, 8861, 9011, 9661
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If the characters of 5 and 6 are not related then the ratio of hyperartiads to
artiads should be 1 = .20. The actual figures are as follows:

Limic Ratio
10 000 8/60 = 2/15 = .1333 Tanner
100 000 86/484 = .1777 Muskat
1 000 000 763/3929 = .1942 : 7040

3. VANDIVER'S PROBLEM

For e = 5 the answer to Professor V andiver's conditions (7) will be found
in the following theorem. ’

TuroreM 2. A prime p satisfies the conditions

wl4+a)y=1 for i=01,234

where o # 1 is a fifth root of unity, if and only if
p=1 (mod350) and w=0 (mod 20).
[The condition w =0 (mod 20) may be replaced by a, = a4 (mod 10) dy (11)]

Proor. The condition of the theorem with 7 = 0 implies that 2 is a fifth

wer residue and hence w = 0 (mod 4). Next since (1 + a) = o(1 + o)
we must have y(x) = 1 and this implies that p = 1 (mod 50). Finally since

— — ofl + o), this implies that y(f) = 1. Conversely if 2, «a and @ are
quintic residues, then (7) is satisfied. This proves the theorem. [1

The only primes satisfying the theorem less than 10,000 are p = 3251 and
p = 4751. There are 20 such primes less than 100,000, among them the
prime p = 61051 cited by Professor Vandiver as an example in [6].

The corresponding problem of finding primes for which
x(1 —a') =1 fir - i=143% (21)
leads to the following theorem.
Tueorem 3. A prime p satisfies conditions (21 ) if and only if
p=1 (mod50) and w=0 (mod25)

A2 3ot}
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Proor. As in Theorem 2 we must have y(«) = 1, next since
(1 +o)=(1 —a®)(l —af)

we have y(1 + of) =1 for i = 1,2, 3,4, and therefore x(6) = 1. Finally
since 5 = [(a@ — af) (a® — a®)]> we have x(5) =1, and w =0 (mod 25).
Conversely, if 5, « and @ are all fifth power residues, then (21) is satisfied.
Hence the solutions are hyperartiads of the form 50z -+ 1.

There are 17 solutions of Theorem 3 less than 100,000, the least one being
13451 among the 86 hyperartiads less than this limit.

In concluding this section we mention a few simple properties of artiads;
namely,

Every artiad has a run of at least four consecutive quintic residues:

6 —2, 0—1, 0, 0+ 1
Every hyper-artiad has a run of at least six consecutive quintic residues:
0—3, 6—2 0-—1, 8, e+1, 0+2

If @ is a quintic, but not a higher power residue, then all the quintic residues
of p can be obtained by addition as follows:

r=1, ry =0, Vo =Tg 3 + Fus-

We now consider the effect of imposing Tanner’s condition (5) for an
artiad with respect to some other prime modulus = % 5. The author has
conjectured and Muskat gave an unpublished proof that such primes = are
eth power residues of p (with some possible exceptions). We give here a proof
of a slightly stronger theorem for e = 5.

THeOREM 4. If a; = ay (mod =) and a, = a, (mod =), where w % 5 is a
prime then = is a quintic residue of p.

Proor. By (16) it follows that u = v =w=0 (mod =) and by (6) that
16p = x® (mod 7). Substituting these into the period equation considered

‘as a congruence modulo = [7], we obtain

F(2) = 25 — 10p2® — 5px2® — 15p% — p*x  (mod =).
For z = x (mod =), we have
F(x) = x5 — 15px® — 16p°x = x(x® +-p) (x* — 16p) =0  (mod 7).

But by Kummer’s theorem all the factors of numbers represented by the
period equation are quintic residues of p. This proves the theorem,

— —

whl
3if

(¢

Ies

be

the

M

an
inc
inc

ind



inally
| 25).
isfied.

being

P e

tiads;

idues:

sidues

or an
r has
m are
proof

Sisa '

) that l

idered

by the

ARTIADS CHARACTERIZED 125

4. THeCasee=3

The question now arises as to whether the notion of an artiad is peculiar
to quintic residues. The problem did not arise in the cubic case because the
two coefficients of the Jacobi function are always congruent modulo 3, and
hence every prime is a cubic artiad.

However, the condition (0, 1) = (0, 2) (mod 3) for a hyperartiad requires
that -

M=(0,1) —(0,2)=0 (mod3),

where 4p = L? + 27M?2. It is well known, however, that M is a multiple of
3if and only if 3 is a cubic residue of p. Vandiver’s problem for e = 3 requires
that 2 and w are cubic residues. This implies that p = 182 + 1 andL = — 2,
(mod 18). '

S. THECAsEe =17

In order to arrive at a reasonable generalization of artiads to seventh power
residues we first give a generalization of Lemma 1.

LemMA 2. Let « # 1 be a seventh root of unity and let 0, = o* + o~
be the roots of the congruence

B 4a2—2x—1=0 (mod)p),
then
ind 0, = k(agy — a;—x) (mod7) (k=1,2,3), (22)
where the subscripts are taken modulo 7.

Proor. Asin Lemma 1 we can write
2ind , = ind (1 — o**) + ind (1 — o®) — ind (1 — a®*) — ind (1 — o).

Substituting the expressions for ind (1 — of) from (13) and using (14)
and (15), we obtain

ind 6; = (0, 2) — (0, 5) + 2[(0, 3) — (0, 4)] — 2((1, 3) — (1, 3)]
ind 6, = 3[(0, 1) — (0, 6)] — 2[(0, 3) — (0, 4)] + 3[(1, 3) — (1, 3)]

ind 6; = — 3[(0, 1) — (0, 6)] — [(0,2) — (0,9)] —[(1,3) —(1,5).  (23)

Ty -
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On the other hand, we find from (11) that
a, — a5 = 2[(0, 1) — (0, 6)] + [(0, 3) — (0, 4)] + 2[(1, 3) — (1, )]
=3indf, (mod7)

ay — a; = —[(0, 1) — (0, 6)] + 2[(0, 2) — (0, )] + 2[(1, 3) — (1, 5)]
=5indf; (mod7)

a3 —ag = (0,2) — (0, 5) + 2[(0, 3) — (0, 4)] — 2[(1, 3) — (1, 5)]
= ind 6, (mod 7). (24)

This proves the lemma.

The following theorem is an immediate consequence of Lemma 2.

THeOREM 5. The three roots of the congruence,
B+ax2—-—2x—1=0 (mod p),

are seventh power residues of p = 14n + 1 if and only if
ay=a,; (mod7) for k=1,2and3. (25)

We will call primes satisfying Theorem $5 septic artiads. The first few
septic artiads are

14197, 21617, 25801, 24977, 25999, ---. ARRFO 00

Their observed densities are as follows:

No. of septic No. of
Limit artiads primes Density
100 000 28 1607 0174
1000 000 240 13063 0184
2000 000 466 24792 .0188

They are short of the expected density of jl5 = .0204, assuming that the
characters of 6, and 6, are not related, while that of 6; is determined, since
their product is equal to 1.

We show that the notion of a hyperartiad also carries over to seventh power
residues by proving the following theorem.

THEOREM 6. A septic artiad has 7 for a seventh power residue if and only if
(0,k)=(0,7—%k (mod7) for k=123 (26)
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Proor. By Theorem 3 we have a;, — a,_, = 0 (mod 7). The condition
for 7 to Be a seventh power residue is [8]

a, —ag + 30(a; — a5) + 18 (a; —a;) =0  (mod 49). (27)
In our case, this reduces to :
[(a, — ag) +2(a; — a;) + 3 (a3 — a,)]/7=0  (mod7). (28)
By using (24), this condition becomes
(0,2) —(0,5)=(0,4) —(0,3) (mod?7).
Substituting this back into 24, we obtain
0,1) —(0,6) = (0,2) — (0, 5) = (0, 3) — (0, 4) (mod 7). (29)

In order to complete the proof of (26), we first point out that (25) implies
a, = a, = *** = ag (mod 7). It follows from (11) that
a, +ag—(ay;+as) =7[(2,4) —(1,4)] =0 (mod 7)
a, +ag— (a3 +a)=7[2,4)—(1,2)]=0 (mod 7), (30)
hence

a, +ag=a, + a;=a, + a, (moed 7), (31)

which together with (25), shows that a, = a; (mod 7) for all 7, j # 0.
We next write (12) in the form (with 2 = 1, j = 2)
4 (aja5 — aza,) = 4 [ay(a, — a;) + a5(a; — a,) + (a3 — a,) (a, — a;)]
= (a1 + a¢)* — (a, — ag)* — (a3 + a,)* + (a3 — a,)*.

Taking this modulo 49 and recalling that for an artiad a; = 1 (mod 7) by (9),
we obtain

a, + a; = a, + a4 (mod 49). (32)
If we repeat this argument with £ = 1, j = 3 we obtain

a; + a;=a, +ag (mod 49). (33)
Hence for an artiad (31) holds modulo 49. Substituting this into (30), we
obtain

(,2)=(1,4)=(2,4) (mod 7). (34)
Using (15) with j = 1 and 2, we have
2(2,4) —(1,2) —(1,4) = (0, l) —(0,2) — (0, 5) + (0, 6),

Ty -
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while (15) with j = 1 and 4 gives
2,4)—21,2)—(1,49=01-03)— (0, 4) + (0, 6).

Hence by (34) we have
©,1) +(0,6)=(0,2) +(0,3) = 0,4) +(0,3)  (mod7) (35)
which together with (29) establishes (26).

Conversely, if (26) holds then conditions (24) and (28) are satisfied, and 7
and all the 8’s are seventh power residues. This completes the proof of the

theorem.

6. VANDIVER'S PROBLEM FOR € = 7
Theorem 2 can be generalized to the case e = 7 as follows:

TugoreMm 7. A prime p satisfies the conditions

Wl +e)y=1 for i=01-6

where o # 1 is a seventh root of unity, if and only if
p=1 (mod 98) and a; = a,_; (mod 14) (i=1,223)
Proor. The condition of the theorem with 7 = 0 implies that x(2) =1 and
hence a; = a,_; (mod 2). Next since (1 + «) = o1 + ag) We have x(x) = 1
and p =98n + 1. Finally, since 6; = of(1 + «-2), we have x(8;) = k.
By Theorem 5 we have a; = a,_; (mod 7) and the conclusion follows. Con-

versely if a; = a;_; (mod 14) then 2 and 0, are seventh power residues, and
ifp=98n + lsoisa and the theorem follows.

Similarly we have an analogue of Theorem 3.

TueoreMm 8. A prime p satisfies the conditions
x(1—ao)=1 for i=0,1,-,6

where « # 1 is a seventh root of unity, if and only if
p=1 (mod98) and  (0,/)=(0,7 —)) (mod 7).

Proor. The conditions of the theorem imply that the conditions of
Theorem 7 hold for ¢ 7 0. Hence « and @, are seventh power residues, and
so is 7, since
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{
Conversely, if «, 8, and 7 are seventh power residues, then the conditions of
the theorem are satisfied. Hence the subset of hyperartiads of the form
987 + 1 provides solutions to this problem and the theorem follows from
Theorem 6.

It is rather surprising that of the 28 septic artiads << 10° in Muskat's
table, none satisfies Theorem 6 or 7 and therefore 8. i

Further calculations on the 7040 at the Computer Center in Berkeley
gave the following results:

Out of the 24(zartiads less than 10° there are seven hyperartiads, namely,

665897, 741413, 794207, 859601, 876611, 892627, 980911.

Of these only 876611 satisfies the conditions of Theorem 8. There are
just two solutions/of Vandiver’s problem for e = 7, namely,

Out of the 466 septic artiads less than 2 - 10° there are 34 hyperartiads,
four of which satisfy Theorem 8, and there are five solutions of Vandiver’s
problem. All these figures are considerably smaller than expected, assuming
independence of the various characters. This is probably due to the large size
of the first solution.

As in the quintic case the artiads enjoy runs of four consecutive seventh
power residues. This follows from the fact that

or’ = 0x+l + 2 and exetd-l S (l + 0:4-!)‘
Hence, as before,
6, —1, 2 0.+ 1, and 6, + 2

are all seventh power residues. Similarily the septic hyperartiads have runs
of six consecutive residues, since — 7 = (8; — 2) (6, — 2) (6; — 2), giving
the additional residues 8§, — 2 and 6, + 3.

Another property of septic artiads which has no analogue in the quintic
case is the following:

THEOREM 9. If p = 14n + | is a septic artiad then t = 0 (mod 7) tn
p=s+ T (36)

Proor. This follows from the expression for # in terms of the cyclotomic
numbers (see [4], p. 376), namely,

2t = (0, 1) + (0, 2) + (0, 4) — (0, 3) — (0, 5) — (0, 6) + (1, 5) — (1, 3).

45@{)4&
B30 80[

p2H 204 874651 and  941879. AIHZQ5
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But by (23) this is congruent modulo 7 to
2t =ind §, —2ind 0, . (37)

Hence for an artiad ¢ = 0 (mod 7) and the theorem follows.
But Eq. (37) proves a little more; namely,

Turorem 10. A prime p = 14n + 1 = s* 4 3437% if and only if
a, + a, + a;=a; + a; + a (mod 7). (38)
ProoF. By (37) the requirement ¢ = 77 implies
indg, =2ind 0, .

Substituting this into (23), we obtain (38). Conversely, if (38) holds, then {
adding the three equations (24), we obtain

— ind 6, + 3ind 0, + 5ind 6; = 0.

But the sum of all the indices is zero, hence ind 8, =2 ind@, and t =0

(mod 7) by (37). This proves the theorem.
Of the 228 primes < 107 satisfying Theorem 10 there are 28 artiads, which

is just short of the expected one-seventh. A'D\:YL( 2 é 5

R Tox CARx o= 11

Theorems 1 and 5 cannot be readily generalized to the case e =11
because Lemmas 1 and 2 lose their simple structure when generalized to
e — 11. We state without proof this generalization in order to clarify the

difficulty which arises at this point:

e —— 1 A S —————— e

Levma 3. Let « # 1 be an eleventh root of unity and let 6 = ok 4 a7k
be the roots of the congruence ;
y5+y‘—4y3-—3y2+3y+1—:=-0 (mod p), l

then
ind 8, — 3ind 6., = Sk(agx — ag) — k(agy — am)

where the subscripts are taken modulo 11.

In is clear from this that if a; = a,; (mod 11) for & =1, 2, -, 10 then

ind 8, = 3ind O, ;
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but this does not guarantee that the 6’s are eleventh power residues. How-

€

ver, if one of the s is a residue, then all the 8’s are residues in this case.

It is quite obvious that for larger values of e the corresponding lemmas would
increase in complexity and one could not expect to obtain results comparable
in simplicity to those obtained above for the cases e = 5 and e = 7.

(=B I
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