login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270802
Primes p of the form 14*k+1 for which there is a solution to x^7 == 2 mod p.
2
631, 673, 953, 1163, 1709, 2003, 2143, 2731, 2857, 3109, 3389, 3739, 4271, 4999, 5237, 5279, 5531, 5867, 6553, 6679, 6959, 7001, 7309, 7351, 7393, 8191, 8681, 9157, 9829, 10627, 10739, 11117, 11243, 11299, 11411, 11467, 13007, 13259, 15121, 15233, 15583, 16073, 18439, 18803, 20063, 20147
OFFSET
1,1
LINKS
Leonard Eugene Dickson, Cyclotomy and trinomial congruences, Transactions of the American Mathematical Society, 37.3 (1935): 363-380. See page 373.
MAPLE
ans:=[];
M:=10000;
e:=7; r:=2;
for k from 2 to M do
p:=ithprime(k);
if p mod 14 = 1 then
for x from 2 to p-1 do
if x^e mod p = r then
ans:=[op(ans), p];
break;
end if;
end do:
end if;
end do:
ans;
# Alternative:
select(p -> isprime(p) and numtheory:-mroot(2, 7, p)<>FAIL, [seq(14*i+1, i=1..3000)]); # Robert Israel, Apr 03 2018
MATHEMATICA
Select[Select[14 Range[10^3] + 1, PrimeQ], Function[p, AnyTrue[Range[2, 10^4], Mod[#^7, p] == 2 &]]] (* Michael De Vlieger, Apr 02 2016, Version 10 *)
PROG
(Magma) [p: p in PrimesUpTo(50000) | IsOne(p mod 14) and exists{x: x in ResidueClassRing(p) | x^7 eq 2}]; // Bruno Berselli, Apr 02 2016
(PARI) forprime(p=2, 10^5, if(p%14!=1, next); if(Mod(2, p)^((p-1)/7)==1, print1(p, ", "))); \\ Joerg Arndt, Apr 03 2016
CROSSREFS
Cf. A042966.
Sequence in context: A376869 A061163 A045168 * A119504 A020387 A217494
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 01 2016
STATUS
approved