The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A270379 Denominators of r-Egyptian fraction expansion for e - 2, where r = (1,1/4,1/9,1/16,...). 1
2, 2, 2, 2, 7, 37, 1817, 3361666, 24283670558553, 1002770956493811911694552768, 843337841302004296404319706946194895734287215696998151, 890614335579920230119707369559263943501588363957602897846451247124061017888881480680329044310526970935480485 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1)) + r(2)/(n(2) + r(3)/n(3) + ... , the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.
LINKS
Eric Weisstein's World of Mathematics, Egyptian Fraction
EXAMPLE
e - 2 = 1/2 + 1/(2*2) + 1/(9*2) + 1/(16*2) + 1/(25*7) + ...
MATHEMATICA
r[k_] := 1/k^2; f[x_, 0] = x; z = 10;
n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
x = E - 2; Table[n[x, k], {k, 1, z}]
PROG
(PARI) r(k) = 1/k^2;
f(k, x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x); );
a(k, x=exp(1)-2) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 21 2016
CROSSREFS
Cf. A269993.
Sequence in context: A138068 A246052 A054083 * A337358 A295557 A327641
KEYWORD
nonn,frac,easy
AUTHOR
Clark Kimberling, Mar 20 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 11:02 EDT 2024. Contains 372788 sequences. (Running on oeis4.)