login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270376
Denominators of r-Egyptian fraction expansion for 1/Pi, where r = (1, 1/4, 1/9, 1/16, ...).
1
4, 4, 20, 246, 150610, 28628772458, 4633718454684972107216, 32270052939985266099596531363945117655631355, 1531822012919710742180024988940181184501391371231597927081244972822399811859680584475111
OFFSET
1,1
COMMENTS
Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.
EXAMPLE
1/Pi = 1/4 + 1/(4*4) + 1/(9*20) + 1/(16*246) + ...
MATHEMATICA
r[k_] := 1/k^2; f[x_, 0] = x; z = 10;
n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
x = 1/Pi; Table[n[x, k], {k, 1, z}]
PROG
(PARI) r(k) = 1/k^2;
f(k, x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x); );
a(k, x=1/Pi) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 21 2016
CROSSREFS
Cf. A269993.
Sequence in context: A014433 A191366 A216164 * A323744 A205142 A072696
KEYWORD
nonn,frac,easy
AUTHOR
Clark Kimberling, Mar 20 2016
STATUS
approved