login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270378
Denominators of r-Egyptian fraction expansion for 1/e, where r = (1, 1/4, 1/9, 1/16, ...).
1
3, 8, 34, 2222, 6483909, 53731622976437, 3099497943165662781193803037, 63757313155180253672051718522425349303280644466076099608, 44373380497244637497779460270147771148709175688739800767598157179085876588140068013506306978166146857743130359405
OFFSET
1,1
COMMENTS
Suppose that r is a sequence of rational numbers r(k) <= 1 for k >= 1, and that x is an irrational number in (0,1). Let f(0) = x, n(k) = floor(r(k)/f(k-1)), and f(k) = f(k-1) - r(k)/n(k). Then x = r(1)/n(1) + r(2)/n(2) + r(3)/n(3) + ..., the r-Egyptian fraction for x.
See A269993 for a guide to related sequences.
EXAMPLE
1/e = 1/3 + 1/(4*8) + 1/(9*34) + 1/(16*2222) + ...
MATHEMATICA
r[k_] := 1/k^2; f[x_, 0] = x; z = 10;
n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]]
f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k]
x = 1/E; Table[n[x, k], {k, 1, z}]
PROG
(PARI) r(k) = 1/k^2;
f(k, x) = if (k==0, x, f(k-1, x) - r(k)/a(k, x); );
a(k, x=exp(-1)) = ceil(r(k)/f(k-1, x)); \\ Michel Marcus, Mar 21 2016
CROSSREFS
Cf. A269993.
Sequence in context: A094448 A063805 A125046 * A218154 A349968 A204451
KEYWORD
nonn,frac,easy
AUTHOR
Clark Kimberling, Mar 20 2016
STATUS
approved