login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269555
Expansion of (x^2 + 254*x - 7)/(x^3 - 99*x^2 + 99*x - 1).
8
7, 439, 42767, 4190479, 410623927, 40236954119, 3942810879487, 386355229235359, 37858869654185447, 3709782870880938199, 363520862476677757807, 35621334739843539326639, 3490527283642190176252567, 342036052462194793733424679, 33516042614011447595699365727, 3284230140120659669584804416319
OFFSET
0,1
COMMENTS
Mc Laughlin (2010) gives an identity relating ten sequences, denoted a_k, b_k, ..., f_k, p_k, q_k, r_k, s_k. This is the sequence r_k.
FORMULA
G.f.: (x^2 + 254*x - 7)/(x^3 - 99*x^2 + 99*x - 1).
a(n) = 31/12 + (-(22*sqrt(6) - 53)/(2*sqrt(6) + 5)^(2*n) + (22*sqrt(6) + 53)*(2*sqrt(6)+5)^(2*n))/24. - Bruno Berselli, Mar 01 2016
MATHEMATICA
CoefficientList[Series[(x^2 + 254 x - 7)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[FullSimplify[31/12 + (-(22 Sqrt[6] - 53)/(2 Sqrt[6] + 5)^(2 n) + (22 Sqrt[6] + 53) (2 Sqrt[6] + 5)^(2 n))/24], {n, 0, 20}] (* Bruno Berselli, Mar 01 2016 *)
LinearRecurrence[{99, -99, 1}, {7, 439, 42767}, 20] (* Harvey P. Dale, Apr 10 2019 *)
PROG
(PARI) Vec((x^2 + 254*x - 7)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
(Sage)
gf = (x^2+254*x-7)/(x^3-99*x^2+99*x-1)
print(taylor(gf, x, 0, 20).list()) # Bruno Berselli, Mar 01 2016
(Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^2+254*x-7)/(x^3-99*x^2+99*x-1))); // Bruno Berselli, Mar 01 2016
KEYWORD
nonn,easy,changed
AUTHOR
Michel Marcus, Feb 29 2016
STATUS
approved