Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Jan 05 2025 19:51:40
%S 7,439,42767,4190479,410623927,40236954119,3942810879487,
%T 386355229235359,37858869654185447,3709782870880938199,
%U 363520862476677757807,35621334739843539326639,3490527283642190176252567,342036052462194793733424679,33516042614011447595699365727,3284230140120659669584804416319
%N Expansion of (x^2 + 254*x - 7)/(x^3 - 99*x^2 + 99*x - 1).
%C Mc Laughlin (2010) gives an identity relating ten sequences, denoted a_k, b_k, ..., f_k, p_k, q_k, r_k, s_k. This is the sequence r_k.
%H J. Mc Laughlin, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/48-1/McLaughlin.pdf">An identity motivated by an amazing identity of Ramanujan</a>, Fib. Q., 48 (No. 1, 2010), 34-38.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (99,-99,1).
%F G.f.: (x^2 + 254*x - 7)/(x^3 - 99*x^2 + 99*x - 1).
%F a(n) = 31/12 + (-(22*sqrt(6) - 53)/(2*sqrt(6) + 5)^(2*n) + (22*sqrt(6) + 53)*(2*sqrt(6)+5)^(2*n))/24. - _Bruno Berselli_, Mar 01 2016
%t CoefficientList[Series[(x^2 + 254 x - 7)/(x^3 - 99 x^2 + 99 x - 1), {x, 0, 20}], x] (* or *) Table[FullSimplify[31/12 + (-(22 Sqrt[6] - 53)/(2 Sqrt[6] + 5)^(2 n) + (22 Sqrt[6] + 53) (2 Sqrt[6] + 5)^(2 n))/24], {n, 0, 20}] (* _Bruno Berselli_, Mar 01 2016 *)
%t LinearRecurrence[{99,-99,1},{7,439,42767},20] (* _Harvey P. Dale_, Apr 10 2019 *)
%o (PARI) Vec((x^2 + 254*x - 7)/(x^3 - 99*x^2 + 99*x - 1) + O(x^20))
%o (Sage)
%o gf = (x^2+254*x-7)/(x^3-99*x^2+99*x-1)
%o print(taylor(gf, x, 0, 20).list()) # _Bruno Berselli_, Mar 01 2016
%o (Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^2+254*x-7)/(x^3-99*x^2+99*x-1))); // _Bruno Berselli_, Mar 01 2016
%Y Cf. A261004, A269548, A269549, A269550, A269551, A269552, A269553, A269554, A269556.
%K nonn,easy,changed
%O 0,1
%A _Michel Marcus_, Feb 29 2016