

A269553


Expansion of (5*x^2 + 138*x + 3)/(x^3  99*x^2 + 99*x  1).


9



3, 435, 42763, 4190475, 410623923, 40236954115, 3942810879483, 386355229235355, 37858869654185443, 3709782870880938195, 363520862476677757803, 35621334739843539326635, 3490527283642190176252563, 342036052462194793733424675, 33516042614011447595699365723
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

McLaughlin (2010) gives an identity relating ten sequences, denoted a_k, b_k, ..., f_k, p_k, q_k, r_k, s_k. This is the sequence p_k.


LINKS

Table of n, a(n) for n=0..14.
J. McLaughlin, An identity motivated by an amazing identity of Ramanujan, Fib. Q., 48 (No. 1, 2010), 3438.
Index entries for linear recurrences with constant coefficients, signature (99, 99, 1).


PROG

Vec((5*x^2 + 138*x + 3)/(x^3  99*x^2 + 99*x  1) + O(x^20))


CROSSREFS

Sequence in context: A087771 A332143 A277234 * A086207 A326373 A092052
Adjacent sequences: A269550 A269551 A269552 * A269554 A269555 A269556


KEYWORD

sign,easy


AUTHOR

Michel Marcus, Feb 29 2016


STATUS

approved



