login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A269466
Number of length-n 0..7 arrays with no repeated value equal to the previous repeated value.
1
8, 64, 504, 3976, 31304, 246232, 1934856, 15190840, 119174216, 934305400, 7320389832, 57325443448, 448697920328, 3510562344184, 27455875247304, 214658236385656, 1677757456358984, 13109740539632632, 102412911071378376
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 13*a(n-1) -28*a(n-2) -98*a(n-3).
Conjectures from Colin Barker, Jan 22 2019: (Start)
G.f.: 8*x*(1 - 5*x - 13*x^2) / ((1 - 7*x)*(1 - 6*x - 14*x^2)).
a(n) = 2*(-92*7^n + (345-67*sqrt(23))*(3-sqrt(23))^n + (3+sqrt(23))^n*(345+67*sqrt(23))) / 1127.
(End)
EXAMPLE
Some solutions for n=5:
..7. .5. .3. .6. .4. .7. .3. .6. .3. .0. .1. .7. .7. .7. .3. .1
..5. .7. .0. .4. .3. .6. .5. .5. .5. .4. .7. .1. .4. .7. .2. .1
..3. .5. .7. .3. .5. .1. .2. .7. .5. .7. .4. .0. .6. .1. .7. .7
..6. .4. .5. .2. .3. .1. .4. .6. .0. .3. .5. .7. .5. .4. .0. .1
..6. .0. .0. .1. .6. .4. .3. .3. .4. .2. .4. .0. .4. .5. .7. .4
CROSSREFS
Column 7 of A269467.
Sequence in context: A269677 A269408 A269605 * A127426 A268456 A126629
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 27 2016
STATUS
approved