login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269465
Number of length-n 0..6 arrays with no repeated value equal to the previous repeated value.
1
7, 49, 336, 2310, 15834, 108402, 741090, 5060706, 34523202, 235304034, 1602555906, 10906971810, 74188793154, 504367206882, 3427339028610, 23280526483746, 158079249910722, 1073053862250594, 7281968079533826, 49404973360789410
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 11*a(n-1) -18*a(n-2) -72*a(n-3).
Conjectures from Colin Barker, Jan 22 2019: (Start)
G.f.: 7*x*(1 - 4*x - 11*x^2) / ((1 - 6*x)*(1 - 5*x - 12*x^2)).
a(n) = (7/657)*2^(-4-n) * (-73*3^n*4^(1+n) + (949-103*sqrt(73))*(5-sqrt(73))^n + (5+sqrt(73))^n*(949+103*sqrt(73))).
(End)
EXAMPLE
Some solutions for n=6:
..4. .4. .2. .4. .4. .4. .5. .4. .3. .0. .6. .5. .0. .4. .2. .1
..5. .4. .2. .1. .2. .4. .6. .0. .2. .6. .4. .2. .6. .0. .4. .1
..3. .5. .4. .4. .2. .2. .6. .0. .1. .0. .0. .0. .6. .6. .6. .0
..6. .2. .3. .3. .4. .6. .0. .6. .0. .5. .4. .0. .3. .0. .0. .5
..3. .1. .5. .6. .2. .5. .3. .2. .5. .3. .1. .4. .6. .5. .3. .3
..5. .6. .0. .4. .0. .4. .2. .4. .1. .1. .1. .6. .0. .5. .3. .3
CROSSREFS
Column 6 of A269467.
Sequence in context: A269676 A269407 A269604 * A268455 A323559 A366925
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 27 2016
STATUS
approved