login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A269455 Number of Type I (singly-even) self-dual binary codes of length 2n. 1
1, 3, 15, 105, 2295, 75735, 4922775, 625192425, 163204759575, 83724041661975, 85817142703524375, 175667691114114395625, 720413716161839357604375, 5902349576513949856852644375, 96709997811181068404530578084375, 3168896498278970068411253452090715625, 207692645973961964120828372930661061284375, 27222898185745116523209337325140537285726884375, 7136346644902153570976711733098966146766874104484375, 3741493773415815389266667264411257664189964123617799515625 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A self dual binary linear code is either Type I (singly even) or Type II (doubly even).  A self dual binary linear code can only be Type II if the length of the code (2n) is a multiple of 8. The total number self dual binary linear codes (including equivalent codes) is equal to the number of Type I self dual binary linear codes (including equivalent codes) when the length (2n) is not a multiple of 8.  If the length is a multiple of 8 ( 2n =0 mod 8 ) then the total number of  Type I codes is the number of type II codes subtracted from the total number of self dual codes of length 2n.

REFERENCES

W. Cary Huffman and Vera Pless, Fundamentals of Error Correcting Codes, 2003, Page 366.

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1977.

LINKS

Nathan J. Russell, Table of n, a(n) for n = 1..49

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.

P. Gaborit, Tables of Self-Dual Codes

E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998; (Abstract, pdf, ps).

FORMULA

From Nathan J. Russell, March 1, 2016: (Start)

If 2n = 0 MOD 8 then a(n) = prod_(2^i+1, i=1,...,n-1) - prod_(2^i+1, i=0,...,n-2);

If 2n != 0 MOD 8 then a(n) = prod_(2^i+1, i=1,...,n-1).

If 2n = 0 MOD 8 then a(n) = A028362(n) - A028363( n/8);

If 2n != 0 MOD 8 then a(n) = A028362(n).

(End)

MATHEMATICA

From Nathan J. Russell, March 1, 2016: (Start)

Table[

If[Mod[2 n, 8] == 0,

  Product[2^i + 1, {i, 1, n - 1}] - Product[2^i + 1, {i, 0, n - 2}] ,

  Product[2^i + 1, {i, 1, n - 1}]],

{n, 1, 10}]

(End)

PROG

(PYTHON) for n in range(1, 10):

        product1 = 1

        for i in range(1, n-1 + 1):

            product1 *= (2**i+1)

        if (2*n)%8 == 0:

            product2 = 1

            for i in range(0, n-2 + 1):

                product2 *= (2**i+1)

            print str(product1 - product2)

        else:

            print str(product1)

(PARI) a(n) = if (2*n%8==0, prod(i=1, n-1, 2^i+1)-prod(i=0, n-2, 2^i+1), prod(i=1, n-1, 2^i+1))

vector(20, n, a(n)) \\ Colin Barker, Feb 28 2016

CROSSREFS

Cf. A003178, A003179, A028363, A028361.

Sequence in context: A070826 A048599 A129731 * A088109 A231634 A128276

Adjacent sequences:  A269452 A269453 A269454 * A269456 A269457 A269458

KEYWORD

nonn

AUTHOR

Nathan J. Russell, Feb 27 2016

EXTENSIONS

a(20) corrected by Andrew Howroyd, Feb 22 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 25 22:09 EDT 2018. Contains 304582 sequences. (Running on oeis4.)