

A269453


The order of 2 mod m when m is the product of two distinct safe primes.


0



12, 20, 30, 44, 33, 92, 110, 116, 69, 174, 164, 230, 212, 246, 290, 318, 332, 356, 410, 253, 452, 249, 530, 534, 524, 638, 678, 692, 716, 830, 393, 902, 764, 890, 932, 956, 1038, 1166, 1130, 537, 1004, 573, 1334, 1124, 1310, 1172, 1398, 717, 753, 1436, 1730, 913, 1886, 1686, 1790
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The smallest positive integer k for which 2^k == 1 (mod m) where m = p*q with p, q distinct safe primes.


LINKS



FORMULA



MATHEMATICA

MultiplicativeOrder[2, #] & /@ Select[Select[Range@ 4200, PrimeNu@ # == 2 &], Times @@ Map[If[PrimeQ[(#  1)/2], #, 0] &, Map[First, FactorInteger@ #]] == # &] (* Michael De Vlieger, Feb 28 2016 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



