|
|
A231634
|
|
a(n) is the denominator of the probability that n segments of length 2, each placed randomly on a line segment of length 2n, will completely cover the line segment.
|
|
1
|
|
|
1, 3, 15, 105, 2835, 31185, 2027025, 91216125, 10854718875, 206239658625, 7795859096025, 4482618980214375, 72512954091703125, 99850337784275203125, 37643577344671751578125, 8168656283793770092453125, 12518528979807790079765625
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Denominators of the probability function defined in A231580.
|
|
LINKS
|
|
|
FORMULA
|
Denominator of f(n) where f(0)=1 and f(n) = Sum_{k=0..n-1} f(n)*f(n-k-1)/(2*n-1). - Michael Somos, Mar 01 2014
|
|
EXAMPLE
|
1, 2/3, 7/15, 34/105, 638/2835, 4876/31185, 220217/2027025, 6885458/91216125, 569311642/10854718875, 7515775348/206239658625, 197394815194/7795859096025, ...
|
|
MATHEMATICA
|
f[g_List, l_] := f[g, l] = Sum[f[g[[;; n]], l] f[g[[n + 1 ;; ]], l], {n, Length[g] - 1}]/(Total[l + g] - 2 l + 1);
f[{_}] = f[{_}, _] = 1;
f[ConstantArray[0, #], 2] & /@ Range[2, 20] // Denominator
|
|
PROG
|
(PARI) f=[1]; for(n=2, 25, f=concat(f, sum(k=1, n-1, (f[k]*f[n-k])) / (2*n-3))); f
vector(#f, k, denominator(f[k])) \\ Colin Barker, Jul 24 2014, sequence shifted by 1 index
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|