OFFSET
1,2
COMMENTS
Denominators of the probability function defined in A231580.
FORMULA
Denominator of f(n) where f(0)=1 and f(n) = Sum_{k=0..n-1} f(n)*f(n-k-1)/(2*n-1). - Michael Somos, Mar 01 2014
EXAMPLE
1, 2/3, 7/15, 34/105, 638/2835, 4876/31185, 220217/2027025, 6885458/91216125, 569311642/10854718875, 7515775348/206239658625, 197394815194/7795859096025, ...
MATHEMATICA
f[g_List, l_] := f[g, l] = Sum[f[g[[;; n]], l] f[g[[n + 1 ;; ]], l], {n, Length[g] - 1}]/(Total[l + g] - 2 l + 1);
f[{_}] = f[{_}, _] = 1;
f[ConstantArray[0, #], 2] & /@ Range[2, 20] // Denominator
PROG
(PARI) f=[1]; for(n=2, 25, f=concat(f, sum(k=1, n-1, (f[k]*f[n-k])) / (2*n-3))); f
vector(#f, k, denominator(f[k])) \\ Colin Barker, Jul 24 2014, sequence shifted by 1 index
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Philipp O. Tsvetkov, Nov 12 2013
EXTENSIONS
More terms from Colin Barker, Jul 24 2014
Name edited by Jon E. Schoenfield, Nov 13 2018
STATUS
approved