login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231634
a(n) is the denominator of the probability that n segments of length 2, each placed randomly on a line segment of length 2n, will completely cover the line segment.
1
1, 3, 15, 105, 2835, 31185, 2027025, 91216125, 10854718875, 206239658625, 7795859096025, 4482618980214375, 72512954091703125, 99850337784275203125, 37643577344671751578125, 8168656283793770092453125, 12518528979807790079765625
OFFSET
1,2
COMMENTS
Denominators of the probability function defined in A231580.
FORMULA
Denominator of f(n) where f(0)=1 and f(n) = Sum_{k=0..n-1} f(n)*f(n-k-1)/(2*n-1). - Michael Somos, Mar 01 2014
EXAMPLE
1, 2/3, 7/15, 34/105, 638/2835, 4876/31185, 220217/2027025, 6885458/91216125, 569311642/10854718875, 7515775348/206239658625, 197394815194/7795859096025, ...
MATHEMATICA
f[g_List, l_] := f[g, l] = Sum[f[g[[;; n]], l] f[g[[n + 1 ;; ]], l], {n, Length[g] - 1}]/(Total[l + g] - 2 l + 1);
f[{_}] = f[{_}, _] = 1;
f[ConstantArray[0, #], 2] & /@ Range[2, 20] // Denominator
PROG
(PARI) f=[1]; for(n=2, 25, f=concat(f, sum(k=1, n-1, (f[k]*f[n-k])) / (2*n-3))); f
vector(#f, k, denominator(f[k])) \\ Colin Barker, Jul 24 2014, sequence shifted by 1 index
CROSSREFS
Cf. A231580.
Sequence in context: A129731 A269455 A088109 * A353587 A128276 A295124
KEYWORD
nonn,frac
AUTHOR
Philipp O. Tsvetkov, Nov 12 2013
EXTENSIONS
More terms from Colin Barker, Jul 24 2014
Name edited by Jon E. Schoenfield, Nov 13 2018
STATUS
approved