login
A231632
Squares that are also sums of 2 and 3 nonzero squares.
2
169, 225, 289, 625, 676, 841, 900, 1156, 1225, 1369, 1521, 1681, 2025, 2500, 2601, 2704, 2809, 3025, 3364, 3600, 3721, 4225, 4624, 4900, 5329, 5476, 5625, 6084, 6724, 7225, 7569, 7921, 8100, 8281, 9025, 9409, 10000, 10201, 10404, 10816, 11025, 11236, 11881, 12100, 12321, 12769, 13225, 13456, 13689, 14161
OFFSET
1,1
COMMENTS
All terms == {0, 1} (mod 4).
Intersection of A000290, A000404 and A000408.
A square n^2 is the sum of k positive squares for all 1 <= k <= n^2 - 14 iff n^2 is the sum of 2 and 3 positive squares (see A309778 and proof in Kuczma) . Consequently this is a duplicate of A018820. - Bernard Schott, Aug 17 2019
REFERENCES
Marcin E. Kuczma, International Mathematical Olympiads, 1986-1999, The Mathematical Association of America, 2003, pages 76-79.
LINKS
Zak Seidov and Chai Wah Wu, Table of n, a(n) for n = 1..10000 n = 1..100 from Zak Seidov
EXAMPLE
169 = 13^2 = 5^2 + 12^2 = 3^2 + 4^2 + 12^2;
225 = 15^2 = 9^2 + 12^2 = 2^2 + 5^2 + 14^2.
CROSSREFS
KEYWORD
dead
AUTHOR
Zak Seidov, Nov 12 2013
STATUS
approved