login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269405
Number of length-n 0..4 arrays with no repeated value greater than or equal to the previous repeated value.
1
5, 25, 120, 570, 2670, 12380, 56890, 259445, 1175355, 5293671, 23718780, 105781845, 469798125, 2078552055, 9164402118, 40277785365, 176503698495, 771372344695, 3362640467600, 14624384170213, 63463229049585, 274836205944615
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 20*a(n-1) - 150*a(n-2) + 460*a(n-3) - 65*a(n-4) - 2472*a(n-5) + 2320*a(n-6) + 6400*a(n-7) - 3840*a(n-8) - 10240*a(n-9) - 4096*a(n-10).
Empirical g.f.: x*(5 - 75*x + 370*x^2 - 380*x^3 - 1905*x^4 + 3265*x^5 + 5590*x^6 - 5865*x^7 - 11455*x^8 - 4339*x^9) / ((1 + x)^4*(1 - 4*x)^6). - Colin Barker, Jan 21 2019
EXAMPLE
Some solutions for n=7:
..2. .1. .4. .2. .0. .1. .3. .1. .2. .0. .2. .3. .4. .4. .4. .0
..4. .0. .3. .1. .2. .4. .1. .0. .4. .2. .3. .2. .3. .2. .3. .0
..1. .3. .2. .3. .0. .4. .0. .4. .2. .0. .0. .0. .0. .3. .4. .2
..4. .4. .0. .1. .4. .1. .0. .0. .2. .0. .3. .2. .3. .1. .3. .3
..2. .2. .3. .2. .2. .2. .1. .2. .3. .4. .0. .3. .4. .4. .2. .4
..4. .2. .2. .4. .2. .0. .0. .3. .0. .2. .0. .1. .1. .3. .0. .2
..2. .1. .4. .4. .0. .4. .4. .2. .4. .0. .4. .0. .4. .4. .3. .0
CROSSREFS
Column 4 of A269409
Sequence in context: A268940 A269636 A269533 * A269674 A269602 A089927
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 25 2016
STATUS
approved