Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jan 21 2019 10:08:05
%S 5,25,120,570,2670,12380,56890,259445,1175355,5293671,23718780,
%T 105781845,469798125,2078552055,9164402118,40277785365,176503698495,
%U 771372344695,3362640467600,14624384170213,63463229049585,274836205944615
%N Number of length-n 0..4 arrays with no repeated value greater than or equal to the previous repeated value.
%H R. H. Hardin, <a href="/A269405/b269405.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 20*a(n-1) - 150*a(n-2) + 460*a(n-3) - 65*a(n-4) - 2472*a(n-5) + 2320*a(n-6) + 6400*a(n-7) - 3840*a(n-8) - 10240*a(n-9) - 4096*a(n-10).
%F Empirical g.f.: x*(5 - 75*x + 370*x^2 - 380*x^3 - 1905*x^4 + 3265*x^5 + 5590*x^6 - 5865*x^7 - 11455*x^8 - 4339*x^9) / ((1 + x)^4*(1 - 4*x)^6). - _Colin Barker_, Jan 21 2019
%e Some solutions for n=7:
%e ..2. .1. .4. .2. .0. .1. .3. .1. .2. .0. .2. .3. .4. .4. .4. .0
%e ..4. .0. .3. .1. .2. .4. .1. .0. .4. .2. .3. .2. .3. .2. .3. .0
%e ..1. .3. .2. .3. .0. .4. .0. .4. .2. .0. .0. .0. .0. .3. .4. .2
%e ..4. .4. .0. .1. .4. .1. .0. .0. .2. .0. .3. .2. .3. .1. .3. .3
%e ..2. .2. .3. .2. .2. .2. .1. .2. .3. .4. .0. .3. .4. .4. .2. .4
%e ..4. .2. .2. .4. .2. .0. .0. .3. .0. .2. .0. .1. .1. .3. .0. .2
%e ..2. .1. .4. .4. .0. .4. .4. .2. .4. .0. .4. .0. .4. .4. .3. .0
%Y Column 4 of A269409
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 25 2016