The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A269403 Expansion of x*(2 - x + 2*x^2 + x^3)/((1 - x)^3*(1 + x + x^2 + x^3)). 0
 0, 2, 3, 6, 10, 16, 21, 28, 36, 46, 55, 66, 78, 92, 105, 120, 136, 154, 171, 190, 210, 232, 253, 276, 300, 326, 351, 378, 406, 436, 465, 496, 528, 562, 595, 630, 666, 704, 741, 780, 820, 862, 903, 946, 990, 1036, 1081, 1128, 1176, 1226, 1275, 1326, 1378, 1432, 1485 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Partial sums of A080412. LINKS Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-2,1). FORMULA G.f.: x*(2 - x + 2*x^2 + x^3)/((1 - x)^3*(1 + x + x^2 + x^3)). a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6). a(n) = (2*n^2 + 2*n + 2*sin((Pi*n)/2) - (-1)^n + 1)/4. Sum_{n>=1} 1/a(n) = 1.495144413654306177... EXAMPLE a(0) = 0; a(1) = 0 + 2 = 2; a(2) = 0 + 2 + 1 = 3; a(3) = 0 + 2 + 1 + 3 = 6; a(4) = 0 + 2 + 1 + 3 + 4 = 10; a(5) = 0 + 2 + 1 + 3 + 4 + 6 = 16; a(6) = 0 + 2 + 1 + 3 + 4 + 6 + 5 = 21; a(7) = 0 + 2 + 1 + 3 + 4 + 6 + 5 + 7 = 28; a(8) = 0 + 2 + 1 + 3 + 4 + 6 + 5 + 7 + 8 = 36; a(9) = 0 + 2 + 1 + 3 + 4 + 6 + 5 + 7 + 8 + 10 = 46, etc. MATHEMATICA LinearRecurrence[{2, -1, 0, 1, -2, 1}, {0, 2, 3, 6, 10, 16}, 55] Table[(2 n^2 + 2 n + 2 Sin[(Pi n)/2] - (-1)^n + 1)/4, {n, 0, 54}] CROSSREFS Cf. A001477, A080412, A116996. Sequence in context: A048681 A051891 A108062 * A075623 A024801 A324742 Adjacent sequences:  A269400 A269401 A269402 * A269404 A269405 A269406 KEYWORD nonn,easy AUTHOR Ilya Gutkovskiy, Feb 25 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 15:55 EDT 2020. Contains 334684 sequences. (Running on oeis4.)