login
A269397
Permutation of natural numbers: a(1) = 1, a(A233271(1+n)) = A179016(1+a(n)), a(A269390(n)) = A213713(a(n)), where A179016, A233271 are the infinite trunks of binary beanstalk and inverted binary beanstalk and A213713, A269390 their complements.
4
1, 3, 2, 7, 6, 5, 4, 16, 13, 12, 10, 15, 9, 27, 11, 8, 22, 21, 18, 25, 46, 17, 43, 35, 20, 14, 36, 32, 34, 29, 26, 42, 40, 69, 28, 65, 54, 23, 33, 24, 55, 85, 50, 52, 45, 31, 41, 62, 19, 60, 100, 44, 67, 95, 80, 64, 37, 51, 38, 53, 82, 122, 78, 158, 75, 77, 68, 48, 61, 91, 49, 30, 88, 143, 145, 66, 98, 136, 116, 115, 93, 63, 56, 76, 58, 79, 39
OFFSET
1,2
FORMULA
a(1) = 1, for n > 1, if A269381(n) - A269381(n-1) > 0 [when n is in A233271] a(n) = A179016(1+a(A269381(n)-1)), otherwise a(n) = A213713(a(n-A269381(n))).
As a composition of related permutations:
a(n) = A269402(A269391(n)).
PROG
(Scheme, with memoization-macro definec)
(definec (A269397 n) (cond ((<= n 1) n) ((zero? (- (A269381 n) (A269381 (- n 1)))) (A213713 (A269397 (- n (A269381 n))))) (else (A179016 (+ 1 (A269397 (+ -1 (A269381 n))))))))
CROSSREFS
Inverse: A269398.
Related or similar permutations: A269391, A269401, A269402.
Cf. also A233270.
Sequence in context: A276343 A054429 A269398 * A267107 A126316 A101224
KEYWORD
nonn,base,look
AUTHOR
Antti Karttunen, Mar 05 2016
STATUS
approved