login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Permutation of natural numbers: a(1) = 1, a(A233271(1+n)) = A179016(1+a(n)), a(A269390(n)) = A213713(a(n)), where A179016, A233271 are the infinite trunks of binary beanstalk and inverted binary beanstalk and A213713, A269390 their complements.
4

%I #12 Dec 10 2019 12:10:16

%S 1,3,2,7,6,5,4,16,13,12,10,15,9,27,11,8,22,21,18,25,46,17,43,35,20,14,

%T 36,32,34,29,26,42,40,69,28,65,54,23,33,24,55,85,50,52,45,31,41,62,19,

%U 60,100,44,67,95,80,64,37,51,38,53,82,122,78,158,75,77,68,48,61,91,49,30,88,143,145,66,98,136,116,115,93,63,56,76,58,79,39

%N Permutation of natural numbers: a(1) = 1, a(A233271(1+n)) = A179016(1+a(n)), a(A269390(n)) = A213713(a(n)), where A179016, A233271 are the infinite trunks of binary beanstalk and inverted binary beanstalk and A213713, A269390 their complements.

%H Antti Karttunen, <a href="/A269397/b269397.txt">Table of n, a(n) for n = 1..8191</a>

%H Antti Karttunen, <a href="/A135141/a135141.pdf">Entanglement Permutations</a>, 2016-2017

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F a(1) = 1, for n > 1, if A269381(n) - A269381(n-1) > 0 [when n is in A233271] a(n) = A179016(1+a(A269381(n)-1)), otherwise a(n) = A213713(a(n-A269381(n))).

%F As a composition of related permutations:

%F a(n) = A269402(A269391(n)).

%o (Scheme, with memoization-macro definec)

%o (definec (A269397 n) (cond ((<= n 1) n) ((zero? (- (A269381 n) (A269381 (- n 1)))) (A213713 (A269397 (- n (A269381 n))))) (else (A179016 (+ 1 (A269397 (+ -1 (A269381 n))))))))

%Y Inverse: A269398.

%Y Cf. A179016, A213713, A233271, A269381, A269390.

%Y Related or similar permutations: A269391, A269401, A269402.

%Y Cf. also A233270.

%K nonn,base,look

%O 1,2

%A _Antti Karttunen_, Mar 05 2016