OFFSET
1,2
COMMENTS
Note that every d>1 divides binomial(n-d-1,d-1), if gcd(n,d)=1.
Theorem: A number m > 33 is a member if and only if it is a product p*(p+2), where p is lesser of twin primes (A001359).
This follows from Theorem 1 of the Shevelev (2007) link.
LINKS
R. J. Mathar, Corrigendum to "On the divisibility of ...", arXiv:1109.0922 [math.NT], 2011.
V. Shevelev, On divisibility of binomial(n-i-1,i-1) by i, Intl. J. of Number Theory 3, no.1 (2007), 119-139.
MATHEMATICA
selQ[n_] := !PrimeQ[n] && !PrimeQ[Sqrt[n]] && NoneTrue[Range[2, n/2], Divisible[Binomial[n - # - 1, # - 1], #] && !CoprimeQ[n, #]&];
pp = Select[Prime[Range[200]], PrimeQ[# + 2] &];
Join[Select[Range[33], selQ], pp (pp + 2) // Rest] (* Jean-François Alcover, Sep 28 2018, after Shevelev's theorem *)
PROG
(PARI) isok(n) = { if (!isprime(n) && !(issquare(n, &p) && isprime(p)), for (d=2, n\2, if ((gcd(n, d)!=1) && !(binomial(n-d-1, d-1) % d), return (0))); return (1); ); } \\ Michel Marcus, Feb 20 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Feb 20 2016
EXTENSIONS
Typos in data corrected by Jean-François Alcover, Sep 28 2018
STATUS
approved