login
A269014
Number of 4 X n binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
1
0, 48, 224, 2136, 10976, 73568, 390064, 2291728, 12190944, 67387784, 356115520, 1906181472, 9983123936, 52432319344, 272227610848, 1412208727736, 7276913394080, 37421599567712, 191604936958480, 978880041945808
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) + 28*a(n-2) - 78*a(n-3) - 264*a(n-4) + 296*a(n-5) + 527*a(n-6) - 252*a(n-7) - 324*a(n-8).
Empirical g.f.: 8*x^2*(6 + 4*x - 13*x^2 - 12*x^3) / (1 - 2*x - 16*x^2 + 7*x^3 + 18*x^4)^2. - Colin Barker, Jan 18 2019
EXAMPLE
Some solutions for n=4:
..0..0..1..0. .0..1..0..0. .0..1..0..0. .0..1..0..0. .1..0..0..0
..0..1..0..0. .0..1..0..0. .1..0..0..0. .1..0..0..0. .0..0..1..0
..0..0..0..1. .0..0..0..1. .0..0..0..1. .0..0..0..0. .1..0..1..0
..0..1..0..0. .1..1..0..1. .1..0..0..1. .1..0..0..0. .1..0..0..1
CROSSREFS
Row 4 of A269011.
Sequence in context: A062248 A100146 A235542 * A265422 A211729 A211738
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 17 2016
STATUS
approved