%I
%S 0,48,224,2136,10976,73568,390064,2291728,12190944,67387784,356115520,
%T 1906181472,9983123936,52432319344,272227610848,1412208727736,
%U 7276913394080,37421599567712,191604936958480,978880041945808
%N Number of 4 X n binary arrays with some element plus some horizontally, diagonally or antidiagonally adjacent neighbor totalling two exactly once.
%H R. H. Hardin, <a href="/A269014/b269014.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n1) + 28*a(n2)  78*a(n3)  264*a(n4) + 296*a(n5) + 527*a(n6)  252*a(n7)  324*a(n8).
%F Empirical g.f.: 8*x^2*(6 + 4*x  13*x^2  12*x^3) / (1  2*x  16*x^2 + 7*x^3 + 18*x^4)^2.  _Colin Barker_, Jan 18 2019
%e Some solutions for n=4:
%e ..0..0..1..0. .0..1..0..0. .0..1..0..0. .0..1..0..0. .1..0..0..0
%e ..0..1..0..0. .0..1..0..0. .1..0..0..0. .1..0..0..0. .0..0..1..0
%e ..0..0..0..1. .0..0..0..1. .0..0..0..1. .0..0..0..0. .1..0..1..0
%e ..0..1..0..0. .1..1..0..1. .1..0..0..1. .1..0..0..0. .1..0..0..1
%Y Row 4 of A269011.
%K nonn
%O 1,2
%A _R. H. Hardin_, Feb 17 2016
