Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 May 07 2021 08:44:25
%S 0,1,2,0,3,0,0,1,4,0,0,1,0,1,2,0,5,0,0,1,0,1,2,0,0,1,2,0,3,0,0,1,6,0,
%T 0,1,0,1,2,0,0,1,2,0,3,0,0,1,0,1,2,0,3,0,0,1,4,0,0,1,0,1,2,0,7,0,0,1,
%U 0,1,2,0,0,1,2,0,3,0,0,1,0,1,2,0,3,0,0,1,4,0,0,1,0,1,2,0,0,1,2,0,3,0,0,1,4,0,0,1,0,1,2,0,5,0,0,1,0,1,2,0,0
%N Index of the toggled bit between n and A268717(n+1): a(n) = A000523(A003987(n, A268717(1+n))).
%C A fractal sequence, because a permutation of A007814. Removing zeros yields A268727(n) = a(n)+1.
%H Antti Karttunen, <a href="/A268726/b268726.txt">Table of n, a(n) for n = 0..16383</a>
%H Indranil Ghosh, <a href="/A268726/a268726.txt">C program to generate the sequence</a>
%F a(n) = A007814(1 + A006068(n)).
%F a(n) = A000523(A003987(n, A268717(1+n))).
%F a(n) = floor(log_2(n XOR A003188(1 + A006068(n)))).
%F Other identities:
%F For all n >= 1, a(A003188(n-1)) = A007814(n).
%t A003188[n_]:=BitXor[n, Floor[n/2]]; A006068[n_]:=If[n<2, n, Block[{m=A006068[Floor[n/2]]}, 2m + Mod[Mod[n,2] + Mod[m, 2], 2]]]; A268717[n_]:=If[n<1, 0, A003188[1 + A006068[n - 1]]]; a[n_]:= Floor[Log[2, BitXor[n, A268717[n + 1]]]]; Table[a[n], {n, 0, 200}] (* _Indranil Ghosh_, Apr 02 2017 *)
%o (Scheme) (define (A268726 n) (A000523 (A003987bi n (A268717 (+ 1 n))))) ;; A003987bi implements the bitwise-XOR, defined in A003987.
%o (PARI) A003188(n) = bitxor(n, n\2);
%o A006068(n) = if(n<2, n, {my(m = A006068(n\2)); 2*m + (n%2 + m%2)%2});
%o A268717(n) = if(n<1, 0, A003188(1 + A006068(n - 1)));
%o for(n=0, 200, print1(logint(bitxor(n, A268717(n + 1)), 2),", ")) \\ _Indranil Ghosh_, Apr 02 2017
%o (Python)
%o def A003188(n): return n^(n//2)
%o def A006068(n):
%o if n<2: return n
%o else:
%o m=A006068(n//2)
%o return 2*m + (n%2 + m%2)%2
%o def A268717(n): return 0 if n<1 else A003188(1 + A006068(n - 1))
%o print([int(math.floor(math.log(n^A268717(n + 1), 2))) for n in range(201)]) # _Indranil Ghosh_, Apr 02 2017
%Y One less than A268727.
%Y Cf. A003188, A006068.
%Y Cf. A000523, A003987, A007814, A101080, A268717.
%Y Cf. also array A268833.
%K nonn,base
%O 0,3
%A _Antti Karttunen_, Feb 13 2016