login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268699
Total number of sequences with c_j copies of j and longest increasing subsequence of length k summed over all compositions [c_1, c_2, ..., c_k] of n.
4
1, 1, 2, 6, 22, 95, 471, 2618, 16052, 107313, 775045, 6002106, 49536510, 433485429, 4004680967, 38912323570, 396393445096, 4221367056961, 46878865762185, 541660919690866, 6498811587848690, 80818650742133717, 1040037672241415947, 13829246515918840106
OFFSET
0,3
LINKS
J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. MR 681905
EXAMPLE
The compositions of 4 are [1,1,1,1], [2,1,1], [1,2,1], [1,1,2], [2,2], [3,1], [1,3], [4] giving the a(4) = 22 sequences: 1234, 1123, 1213, 1231, 1223, 2123, 1232, 1233, 1323, 3123, 1122, 1212, 1221, 2112, 2121, 1112, 1121, 1211, 1222, 2122, 2212, 1111.
MAPLE
c:= l-> f(l)*nops(l)!/(v-> mul(coeff(v, x, j)!,
j=0..degree(v)))(add(x^i, i=l)):
g:= proc(l) option remember; (n-> f(l[1..nops(l)-1])*
binomial(n-1, l[-1]-1)+ add(f(sort(subsop(j=l[j]
-1, l))), j=1..nops(l)-1))(add(i, i=l))
end:
f:= l-> (n-> `if`(n<2 or l[-1]=1, 1, `if`(l[1]=0, 0, `if`(
n=2, binomial(l[1]+l[2], l[1])-1, g(l)))))(nops(l)):
h:= (n, i, l)-> `if`(n=0 or i=1, c([1$n, l[]]), h(n, i-1, l)+
`if`(i>n, 0, h(n-i, i, [i, l[]]))):
a:= n-> h(n$2, []):
seq(a(n), n=0..25);
MATHEMATICA
c[l_] := f[l]*Length[l]!/Function[v, Product[Coefficient[v, x, j]!, {j, 0, Exponent[v, x]}]][Sum[x^i, {i, l}]];
g[l_] := g[l] = Function[n, f[Most@l]*Binomial[n-1, l[[-1]]-1] + Sum[f[ Sort[ReplacePart[l, j -> l[[j]]-1]]], {j, 1, Length[l]-1}]][ Total[l]];
f[l_] := Function[n, If[n < 2 || l[[-1]] == 1, 1, If[l[[1]] == 0, 0, If[n == 2, Binomial[l[[1]] + l[[2]], l[[1]]]-1, g[l]]]]][Length[l]];
h[n_, i_, l_] := If[n == 0 || i == 1, c[Join[Array[1&, n], l]], h[n, i-1, l] + If[i > n, 0, h[n-i, i, Join[{i}, l]]]];
a[n_] := h[n, n, {}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Sep 06 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 11 2016
STATUS
approved