Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Sep 06 2022 06:02:14
%S 1,1,2,6,22,95,471,2618,16052,107313,775045,6002106,49536510,
%T 433485429,4004680967,38912323570,396393445096,4221367056961,
%U 46878865762185,541660919690866,6498811587848690,80818650742133717,1040037672241415947,13829246515918840106
%N Total number of sequences with c_j copies of j and longest increasing subsequence of length k summed over all compositions [c_1, c_2, ..., c_k] of n.
%H Alois P. Heinz, <a href="/A268699/b268699.txt">Table of n, a(n) for n = 0..60</a>
%H J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. <a href="http://www.ams.org/mathscinet-getitem?mr=681905">MR 681905</a>
%e The compositions of 4 are [1,1,1,1], [2,1,1], [1,2,1], [1,1,2], [2,2], [3,1], [1,3], [4] giving the a(4) = 22 sequences: 1234, 1123, 1213, 1231, 1223, 2123, 1232, 1233, 1323, 3123, 1122, 1212, 1221, 2112, 2121, 1112, 1121, 1211, 1222, 2122, 2212, 1111.
%p c:= l-> f(l)*nops(l)!/(v-> mul(coeff(v, x, j)!,
%p j=0..degree(v)))(add(x^i, i=l)):
%p g:= proc(l) option remember; (n-> f(l[1..nops(l)-1])*
%p binomial(n-1, l[-1]-1)+ add(f(sort(subsop(j=l[j]
%p -1, l))), j=1..nops(l)-1))(add(i, i=l))
%p end:
%p f:= l-> (n-> `if`(n<2 or l[-1]=1, 1, `if`(l[1]=0, 0, `if`(
%p n=2, binomial(l[1]+l[2], l[1])-1, g(l)))))(nops(l)):
%p h:= (n, i, l)-> `if`(n=0 or i=1, c([1$n, l[]]), h(n, i-1, l)+
%p `if`(i>n, 0, h(n-i, i, [i, l[]]))):
%p a:= n-> h(n$2, []):
%p seq(a(n), n=0..25);
%t c[l_] := f[l]*Length[l]!/Function[v, Product[Coefficient[v, x, j]!, {j, 0, Exponent[v, x]}]][Sum[x^i, {i, l}]];
%t g[l_] := g[l] = Function[n, f[Most@l]*Binomial[n-1, l[[-1]]-1] + Sum[f[ Sort[ReplacePart[l, j -> l[[j]]-1]]], {j, 1, Length[l]-1}]][ Total[l]];
%t f[l_] := Function[n, If[n < 2 || l[[-1]] == 1, 1, If[l[[1]] == 0, 0, If[n == 2, Binomial[l[[1]] + l[[2]], l[[1]]]-1, g[l]]]]][Length[l]];
%t h[n_, i_, l_] := If[n == 0 || i == 1, c[Join[Array[1&, n], l]], h[n, i-1, l] + If[i > n, 0, h[n-i, i, Join[{i}, l]]]];
%t a[n_] := h[n, n, {}];
%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Sep 06 2022, after _Alois P. Heinz_ *)
%Y Cf. A047909, A268698, A268700, A268701.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Feb 11 2016