login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267941
Decimal representation of the n-th iteration of the "Rule 253" elementary cellular automaton starting with a single ON (black) cell.
1
1, 3, 31, 127, 511, 2047, 8191, 32767, 131071, 524287, 2097151, 8388607, 33554431, 134217727, 536870911, 2147483647, 8589934591, 34359738367, 137438953471, 549755813887, 2199023255551, 8796093022207, 35184372088831, 140737488355327, 562949953421311
OFFSET
0,2
COMMENTS
With the exception of a(1) the same as A267938, A267890, A267888 and A083420. - R. J. Mathar, Jan 24 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 23 2016 and Apr 16 2019: (Start)
a(n) = 5*a(n-1)-4*a(n-2) for n>3.
G.f.: (1-2*x+20*x^2-16*x^3) / ((1-x)*(1-4*x)).
(End)
Empirical a(n) = 2^(2*n+1) - 1 for n>1. - Colin Barker, Nov 26 2016
MATHEMATICA
rule=253; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]], 2], {k, 1, rows}] (* Decimal Representation of Rows *)
CROSSREFS
Cf. A060576.
Sequence in context: A199367 A295534 A119682 * A069630 A069615 A087389
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 22 2016
STATUS
approved