The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A267944 Primes that are a prime power minus two. 2
 2, 3, 5, 7, 11, 17, 23, 29, 41, 47, 59, 71, 79, 101, 107, 137, 149, 167, 179, 191, 197, 227, 239, 241, 269, 281, 311, 347, 359, 419, 431, 461, 521, 569, 599, 617, 641, 659, 727, 809, 821, 827, 839, 857, 881 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The sequence is probably infinite, since it includes all the terms of A001359 (Lesser of twin primes). Also includes A049002.  The generalized Bunyakovsky conjecture implies that for every k there are infinitely many terms of the form p^k - 2. - Robert Israel, Jan 22 2016 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 Wikipedia, Generalized Bunyakovsky conjecture EXAMPLE 2 is in the sequence because 2 = 2^2 - 2. 3 is in the sequence because 3 = 5^1 - 2. 5 is in the sequence because 5 = 7^1 - 2. 7 is in the sequence because 7 = 3^2 - 2. MAPLE select(t -> isprime(t) and nops(numtheory:-factorset(t+2))=1, [2, seq(i, i=3..1000, 2)]); # Robert Israel, Jan 22 2016 MATHEMATICA A267944Q = PrimeQ@# && Length@FactorInteger[# + 2] == 1 & (* JungHwan Min, Jan 24 2016 *) Select[Array[Prime, 100], Length@FactorInteger[# + 2] == 1 &] (* JungHwan Min, Jan 24 2016 *) Select[Prime[Range[300]], PrimePowerQ[#+2]&] (* Harvey P. Dale, Nov 28 2016 *) PROG (Sage) [n - 2 for n in prime_powers(1, 1000) if is_prime(n - 2)] (PARI) lista(nn) = {forprime(p=2, nn, if (isprimepower(p+2), print1(p, ", ")); ); } \\ Michel Marcus, Jan 22 2016 CROSSREFS Cf. A000961, A049002, A246655, A267945. Sequence in context: A237285 A175953 A040089 * A113161 A038953 A237288 Adjacent sequences:  A267941 A267942 A267943 * A267945 A267946 A267947 KEYWORD nonn AUTHOR Robert C. Lyons, Jan 22 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 22:13 EDT 2022. Contains 353959 sequences. (Running on oeis4.)