The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A267709 Number of partitions of pentagonal numbers. 1
 1, 1, 7, 77, 1002, 14883, 239943, 4087968, 72533807, 1327710076, 24908858009, 476715857290, 9275102575355, 182973889854026, 3652430836071053, 73653287861850339, 1498478743590581081, 30724985147095051099, 634350763653787028583, 13177726323474524612308 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..730 (terms 0..90 from Ilya Gutkovskiy) Eric Weisstein's World of Mathematics, Partition, Partition Function P Eric Weisstein's World of Mathematics, Pentagonal Number FORMULA a(n) = A000041(A000326(n)). a(n) ~ exp((Pi*sqrt(n*(3*n - 1)))/sqrt(3))/(2*sqrt(3)*n*(3*n - 1)). a(n) = [x^(n*(3*n-1)/2)] Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Apr 11 2017 EXAMPLE a(2) = 7, because second pentagonal number is a 5 and 5 can be partitioned in 7 distinct ways: 5, 4 + 1, 3 + 2, 3 + 1 + 1, 3 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1. MATHEMATICA Table[PartitionsP[n ((3 n - 1)/2)], {n, 0, 19}] PROG (PARI) a(n)=numbpart(n*(3*n-1)/2) \\ Charles R Greathouse IV, Jul 26 2016 (Python) from sympy.ntheory import npartitions print([npartitions(n*(3*n - 1)//2) for n in range(51)]) # Indranil Ghosh, Apr 11 2017 CROSSREFS Cf.  A000041, A000326, A066655, A072213. Sequence in context: A261799 A246236 A349364 * A234466 A306031 A249933 Adjacent sequences:  A267706 A267707 A267708 * A267710 A267711 A267712 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Apr 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 00:08 EST 2022. Contains 350481 sequences. (Running on oeis4.)