login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A267709 Number of partitions of pentagonal numbers. 1
1, 1, 7, 77, 1002, 14883, 239943, 4087968, 72533807, 1327710076, 24908858009, 476715857290, 9275102575355, 182973889854026, 3652430836071053, 73653287861850339, 1498478743590581081, 30724985147095051099, 634350763653787028583, 13177726323474524612308 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..730 (terms 0..90 from Ilya Gutkovskiy)

Eric Weisstein's World of Mathematics, Partition, Partition Function P

Eric Weisstein's World of Mathematics, Pentagonal Number

Index entries for related partition-counting sequences

FORMULA

a(n) = A000041(A000326(n)).

a(n) ~ exp((Pi*sqrt(n*(3*n - 1)))/sqrt(3))/(2*sqrt(3)*n*(3*n - 1)).

a(n) = [x^(n*(3*n-1)/2)] Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Apr 11 2017

EXAMPLE

a(2) = 7, because second pentagonal number is a 5 and 5 can be partitioned in 7 distinct ways: 5, 4 + 1, 3 + 2, 3 + 1 + 1, 3 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.

MATHEMATICA

Table[PartitionsP[n ((3 n - 1)/2)], {n, 0, 19}]

PROG

(PARI) a(n)=numbpart(n*(3*n-1)/2) \\ Charles R Greathouse IV, Jul 26 2016

(Python)

from sympy.ntheory import npartitions

print [npartitions(n*(3*n - 1)/2) for n in range(51)] # Indranil Ghosh, Apr 11 2017

CROSSREFS

Cf.  A000041, A000326, A066655, A072213.

Sequence in context: A097983 A261799 A246236 * A234466 A306031 A249933

Adjacent sequences:  A267706 A267707 A267708 * A267710 A267711 A267712

KEYWORD

nonn

AUTHOR

Ilya Gutkovskiy, Apr 07 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 5 00:01 EDT 2020. Contains 335457 sequences. (Running on oeis4.)