login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267709
Number of partitions of pentagonal numbers.
1
1, 1, 7, 77, 1002, 14883, 239943, 4087968, 72533807, 1327710076, 24908858009, 476715857290, 9275102575355, 182973889854026, 3652430836071053, 73653287861850339, 1498478743590581081, 30724985147095051099, 634350763653787028583, 13177726323474524612308
OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..730 (terms 0..90 from Ilya Gutkovskiy)
Eric Weisstein's World of Mathematics, Partition, Partition Function P
Eric Weisstein's World of Mathematics, Pentagonal Number
FORMULA
a(n) = A000041(A000326(n)).
a(n) ~ exp((Pi*sqrt(n*(3*n - 1)))/sqrt(3))/(2*sqrt(3)*n*(3*n - 1)).
a(n) = [x^(n*(3*n-1)/2)] Product_{k>=1} 1/(1 - x^k). - Ilya Gutkovskiy, Apr 11 2017
EXAMPLE
a(2) = 7, because second pentagonal number is a 5 and 5 can be partitioned in 7 distinct ways: 5, 4 + 1, 3 + 2, 3 + 1 + 1, 3 + 2 + 1, 2 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1.
MATHEMATICA
Table[PartitionsP[n ((3 n - 1)/2)], {n, 0, 19}]
PROG
(PARI) a(n)=numbpart(n*(3*n-1)/2) \\ Charles R Greathouse IV, Jul 26 2016
(Python)
from sympy.ntheory import npartitions
print([npartitions(n*(3*n - 1)//2) for n in range(51)]) # Indranil Ghosh, Apr 11 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 07 2016
STATUS
approved