login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A267277
Zeroless primes p such that p*(product of digits of p)+(sum of digits of p) is also prime.
1
11, 13, 17, 19, 31, 37, 43, 47, 61, 73, 79, 83, 223, 227, 263, 281, 283, 463, 643, 683, 821, 827, 881, 1117, 1231, 1259, 1291, 1321, 1361, 1367, 1433, 1471, 1543, 1567, 1583, 1597, 1619, 1637, 1657, 1699, 1723, 1741, 1753, 1777, 1933, 1951, 1973
OFFSET
1,1
COMMENTS
Zeroless means that the decimal expansion has no digit "0", so no element of A056709 is in the sequence.
If we define a function "n*times products of digits plus sum of digits", f(n) = n*A007954(n) + A007953(n), then iterating the function starting at 217421 generates a chain of at least 4 primes: 217421 -> 24351169 -> 157795575151 -> 1522234189034803183.
LINKS
EXAMPLE
19 => 19*1*9+1+9 = 181 (is prime).
821 => 821*8*2*1+8+2+1 = 13147 (is prime).
2357 => 2357*2*3*5*7+2+3+5+7 = 494987 (is prime).
99995999 => 99995999*(9^7)*5+9*7+5 = 2391388816705223 (is prime).
MAPLE
isA267277 := proc(n)
local pdgs ;
if isprime(n) then
pdgs := A007954(n) ;
if pdgs <> 0 then
isprime(n*pdgs+A007953(n)) ;
else
false;
end if;
else
false;
end if;
end proc:
for n from 1 to 400 do
if isA267277(n) then
printf("%d, \n", n);
end if;
end do: # R. J. Mathar, Jan 16 2016
MATHEMATICA
Select[Prime@ Range@ 480, And[Last@ DigitCount@ # == 0, PrimeQ[Function[k, # Times @@ k + Total@ k]@ IntegerDigits@ #]] &] (* Michael De Vlieger, Jan 12 2016 *)
CROSSREFS
KEYWORD
nonn,base,less,easy
AUTHOR
Emre APARI, Jan 12 2016
STATUS
approved