Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Dec 20 2018 18:24:28
%S 11,13,17,19,31,37,43,47,61,73,79,83,223,227,263,281,283,463,643,683,
%T 821,827,881,1117,1231,1259,1291,1321,1361,1367,1433,1471,1543,1567,
%U 1583,1597,1619,1637,1657,1699,1723,1741,1753,1777,1933,1951,1973
%N Zeroless primes p such that p*(product of digits of p)+(sum of digits of p) is also prime.
%C Zeroless means that the decimal expansion has no digit "0", so no element of A056709 is in the sequence.
%C If we define a function "n*times products of digits plus sum of digits", f(n) = n*A007954(n) + A007953(n), then iterating the function starting at 217421 generates a chain of at least 4 primes: 217421 -> 24351169 -> 157795575151 -> 1522234189034803183.
%H Robert Israel, <a href="/A267277/b267277.txt">Table of n, a(n) for n = 1..10000</a>
%e 19 => 19*1*9+1+9 = 181 (is prime).
%e 821 => 821*8*2*1+8+2+1 = 13147 (is prime).
%e 2357 => 2357*2*3*5*7+2+3+5+7 = 494987 (is prime).
%e 99995999 => 99995999*(9^7)*5+9*7+5 = 2391388816705223 (is prime).
%p isA267277 := proc(n)
%p local pdgs ;
%p if isprime(n) then
%p pdgs := A007954(n) ;
%p if pdgs <> 0 then
%p isprime(n*pdgs+A007953(n)) ;
%p else
%p false;
%p end if;
%p else
%p false;
%p end if;
%p end proc:
%p for n from 1 to 400 do
%p if isA267277(n) then
%p printf("%d,\n",n);
%p end if;
%p end do: # _R. J. Mathar_, Jan 16 2016
%t Select[Prime@ Range@ 480, And[Last@ DigitCount@ # == 0, PrimeQ[Function[k, # Times @@ k + Total@ k]@ IntegerDigits@ #]] &] (* _Michael De Vlieger_, Jan 12 2016 *)
%Y Cf. A007953, A007954, A038618, A056709.
%K nonn,base,less,easy
%O 1,1
%A _Emre APARI_, Jan 12 2016