This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A267140 Least m>0 for which m + n^2 is a square and m + triangular(n) is a triangular number (A000217). 1
 1, 35, 12, 72, 180, 336, 45, 792, 1092, 208, 1836, 2280, 112, 315, 3900, 4536, 644, 5952, 6732, 7560, 225, 715, 10332, 627, 12420, 13536, 924, 1575, 17172, 840, 396, 21240, 22692, 3267, 2565, 27336, 28980, 3392, 32412, 34200, 1881, 3795, 637, 1400, 1785, 45936, 2240 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For n>1, a(n) <= b(n), where b(n) = 24*n^2 - 60*n + 36 = A143698(n-1), because b(n) + n^2 = (5*n-6)^2, and b(n) + n*(n+1)/2 = (7*n-9)*(7*n-8)/2 = triangular(7*n-9). LINKS Chai Wah Wu, Table of n, a(n) for n = 0..10000 EXAMPLE 12 + 2^2 = 16 is a square, and 12 + 2*3/2 = 15 is a triangular number, and 12 is the least such integer, so a(2)=12. PROG (PARI) a(n) = {m = 1; while (! (issquare(m+n^2) && ispolygonal(m+n*(n+1)/2, 3)), m++); m; } \\ Michel Marcus, Jan 11 2016 (Python) from math import sqrt def A267140(n):     u, r, k, m = 2*n+1, 4*n*(n+1)+1, 0, 2*n+1     while True:         if int(sqrt(8*m+r))**2 == 8*m+r:             return m         k += 2         m += u + k # Chai Wah Wu, Jan 13 2016 CROSSREFS Cf. A000217, A000290, A143698, A267077. Sequence in context: A248477 A051050 A267198 * A088830 A033355 A267402 Adjacent sequences:  A267137 A267138 A267139 * A267141 A267142 A267143 KEYWORD nonn AUTHOR Alex Ratushnyak, Jan 10 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 23 22:04 EDT 2018. Contains 316541 sequences. (Running on oeis4.)