login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A267140
Least m>0 for which m + n^2 is a square and m + triangular(n) is a triangular number (A000217).
1
1, 35, 12, 72, 180, 336, 45, 792, 1092, 208, 1836, 2280, 112, 315, 3900, 4536, 644, 5952, 6732, 7560, 225, 715, 10332, 627, 12420, 13536, 924, 1575, 17172, 840, 396, 21240, 22692, 3267, 2565, 27336, 28980, 3392, 32412, 34200, 1881, 3795, 637, 1400, 1785, 45936, 2240
OFFSET
0,2
COMMENTS
For n>1, a(n) <= b(n), where b(n) = 24*n^2 - 60*n + 36 = A143698(n-1), because b(n) + n^2 = (5*n-6)^2, and b(n) + n*(n+1)/2 = (7*n-9)*(7*n-8)/2 = triangular(7*n-9).
EXAMPLE
12 + 2^2 = 16 is a square, and 12 + 2*3/2 = 15 is a triangular number, and 12 is the least such integer, so a(2)=12.
MATHEMATICA
lmst[n_]:=Module[{m=1, n2=n^2, nt=(n(n+1))/2}, While[ !IntegerQ[Sqrt[ m+n2]] || !OddQ[Sqrt[1+8(m+nt)]], m++]; m]; Join[{1}, Array[lmst, 50]] (* Harvey P. Dale, Aug 15 2021 *)
PROG
(PARI) a(n) = {m = 1; while (! (issquare(m+n^2) && ispolygonal(m+n*(n+1)/2, 3)), m++); m; } \\ Michel Marcus, Jan 11 2016
(Python)
from math import sqrt
def A267140(n):
u, r, k, m = 2*n+1, 4*n*(n+1)+1, 0, 2*n+1
while True:
if int(sqrt(8*m+r))**2 == 8*m+r:
return m
k += 2
m += u + k # Chai Wah Wu, Jan 13 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Jan 10 2016
STATUS
approved