login
A267067
Primes p such that mu(p-2) = 1; that is, p-2 is squarefree and has an even number of prime factors, where mu is the Moebius function (A008683).
1
3, 17, 23, 37, 41, 53, 59, 67, 71, 79, 89, 97, 113, 131, 157, 163, 179, 211, 223, 239, 251, 269, 293, 307, 311, 331, 337, 367, 373, 379, 383, 397, 409, 419, 439, 449, 487, 491, 499, 503, 521, 547, 593, 599, 613, 631, 673, 683, 691, 701, 709, 719, 733, 739
OFFSET
1,1
COMMENTS
From Robert Israel, Jan 10 2016: (Start)
Includes all members of A063638 except 11.
The first terms not in A063638 are 3 and 1367. (End)
LINKS
Eric Weisstein's World of Mathematics, Moebius Function
MAPLE
select(p -> isprime(p) and numtheory:-mobius(p-2)=1, [seq(i, i=3..1000, 2)]); # Robert Israel, Jan 10 2016
MATHEMATICA
Select[Prime[Range[200]], MoebiusMu[# - 2] == 1 &]
PROG
(Magma) [n: n in [3..1000] | IsPrime(n) and MoebiusMu(n-2) eq 1];
(PARI) isok(p) = isprime(p) && (p>2) && (moebius(p-2)==1); \\ Michel Marcus, Mar 08 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Jan 10 2016
STATUS
approved