login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266987
Primes p for which the average of the primitive roots equals p/2.
4
2, 5, 13, 17, 19, 29, 37, 41, 53, 61, 73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197, 229, 233, 241, 257, 269, 277, 281, 293, 307, 313, 317, 337, 349, 353, 373, 389, 397, 401, 409, 421, 433, 449
OFFSET
1,1
COMMENTS
From Robert Israel, Feb 01 2016: (Start)
Union of A002144 and A267010.
Contains A002144 because for each of these primes, x is a primitive root iff p-x is a primitive root. (End)
LINKS
FORMULA
a(n) = prime(A266986(n)).
EXAMPLE
a(13) = 13 since the primitive roots of 13 are 2, 6, 7, and 11 and the average of these primitive roots is (2+6+7+11)/phi(12) = 26/4 = 13/2.
MAPLE
proots := proc(n)
local r, eulphi, m;
if n = 1 then
return {0} ;
end if;
eulphi := numtheory[phi](n) ;
r := {} ;
for m from 0 to n-1 do
if numtheory[order](m, n) = eulphi then
r := r union {m} ;
end if;
end do:
return r;
end proc:
isA266987 := proc(n)
local r;
if isprime(n) then
r := convert(proots(n), list) ;
2*add(pr, pr=r) = n*nops(r) ;
else
false;
end if;
end proc:
for n from 1 to 500 do
if isA266987(n) then
printf("%d, ", n);
end if;
end do: # R. J. Mathar, Jan 12 2016
Filter:= proc(p) local x, s, js;
if p mod 4 = 1 then return true fi;
x:= numtheory:-primroot(p);
js:= select(t -> igcd(t, p-1)=1, [$1..p-2]);
s:= add(x&^ j mod p, j=js);
evalb(s = p/2 * nops(js))
end proc:
select(Filter, [seq(ithprime(i), i=1..1000)]); # Robert Israel, Feb 01 2016
MATHEMATICA
A = Table[Total[Flatten[Position[Table[MultiplicativeOrder[i, Prime[k]], {i, Prime[k] - 1}], Prime[k] - 1]]]/(EulerPhi[Prime[k] - 1] Prime[k]/2), {k, 1, 100}]; Prime[Flatten[Position[A, _?(# == 1 &)]]]
(* second program (version >= 10): *)
Select[Prime[Range[100]], Mean[PrimitiveRootList[#]] == #/2&] (* Jean-François Alcover, Jan 12 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved