login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266984
Decimal representation of the n-th iteration of the "Rule 81" elementary cellular automaton starting with a single ON (black) cell.
2
1, 1, 24, 31, 384, 511, 6144, 8191, 98304, 131071, 1572864, 2097151, 25165824, 33554431, 402653184, 536870911, 6442450944, 8589934591, 103079215104, 137438953471, 1649267441664, 2199023255551, 26388279066624, 35184372088831, 422212465065984, 562949953421311
OFFSET
0,3
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 08 2016 and Apr 17 2019: (Start)
a(n) = ((-4)^n+(-1)^n-1)/2+4^n for n>0.
a(n) = 17*a(n-2)-16*a(n-4) for n>4.
G.f.: (1+2*x)*(1-x+9*x^2-4*x^3) / ((1-x)*(1+x)*(1-4*x)*(1+4*x)).
(End)
MATHEMATICA
rule=81; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]], 2], {k, 1, rows}] (* Decimal Representation of Rows *)
CROSSREFS
Sequence in context: A167307 A161378 A206448 * A217158 A214227 A337055
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 07 2016
STATUS
approved