login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266720
Binary representation of the middle column of the "Rule 59" elementary cellular automaton starting with a single ON (black) cell.
3
1, 10, 101, 1011, 10110, 101101, 1011010, 10110101, 101101010, 1011010101, 10110101010, 101101010101, 1011010101010, 10110101010101, 101101010101010, 1011010101010101, 10110101010101010, 101101010101010101, 1011010101010101010, 10110101010101010101
OFFSET
0,2
FORMULA
From Colin Barker, Jan 04 2016 and Apr 18 2019: (Start)
a(n) = (-450*(-1)^n+10009*10^n-550)/9900 for n>1.
a(n) = 10*a(n-1)+a(n-2)-10*a(n-3) for n>4.
G.f.: (1+x^3-x^4) / ((1-x)*(1+x)*(1-10*x)).
(End)
a(n) = floor(10009*10^n/9900). - Karl V. Keller, Jr., Oct 17 2021
MATHEMATICA
rule=59; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]], {k, 1, rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc, k]], {k, 1, rows}] (* Binary Representation of Middle Column *)
PROG
(Python) print([10009*10**n//9900 for n in range(50)]) # Karl V. Keller, Jr., Oct 18 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 03 2016
STATUS
approved