Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Oct 18 2021 22:47:40
%S 1,10,101,1011,10110,101101,1011010,10110101,101101010,1011010101,
%T 10110101010,101101010101,1011010101010,10110101010101,
%U 101101010101010,1011010101010101,10110101010101010,101101010101010101,1011010101010101010,10110101010101010101
%N Binary representation of the middle column of the "Rule 59" elementary cellular automaton starting with a single ON (black) cell.
%H Robert Price, <a href="/A266720/b266720.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H Stephen Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>, Wolfram Media, 2002; p. 55.
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (10,1,-10).
%F From _Colin Barker_, Jan 04 2016 and Apr 18 2019: (Start)
%F a(n) = (-450*(-1)^n+10009*10^n-550)/9900 for n>1.
%F a(n) = 10*a(n-1)+a(n-2)-10*a(n-3) for n>4.
%F G.f.: (1+x^3-x^4) / ((1-x)*(1+x)*(1-10*x)).
%F (End)
%F a(n) = floor(10009*10^n/9900). - _Karl V. Keller, Jr._, Oct 17 2021
%t rule=59; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) mc=Table[catri[[k]][[k]],{k,1,rows}]; (* Keep only middle cell from each row *) Table[FromDigits[Take[mc,k]],{k,1,rows}] (* Binary Representation of Middle Column *)
%o (Python) print([10009*10**n//9900 for n in range(50)]) # _Karl V. Keller, Jr._, Oct 18 2021
%Y Cf. A266716, A266719, A266721.
%K nonn,easy
%O 0,2
%A _Robert Price_, Jan 03 2016