login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266717
Binary representation of the n-th iteration of the "Rule 59" elementary cellular automaton starting with a single ON (black) cell.
3
1, 101, 110, 1111011, 1100, 11111110111, 11000, 111111111101111, 110000, 1111111111111011111, 1100000, 11111111111111110111111, 11000000, 111111111111111111101111111, 110000000, 1111111111111111111111011111111, 1100000000, 11111111111111111111111110111111111
OFFSET
0,2
FORMULA
Conjectures from Colin Barker, Jan 04 2016 and Apr 18 2019: (Start)
a(n) = 10011*a(n-2)-110010*a(n-4)+100000*a(n-6) for n>6.
G.f.: (1+101*x-9901*x^2+99900*x^3-990100*x^4-110000*x^5+1000000*x^6) / ((1-x)*(1+x)*(1-100*x)*(1+100*x)*(1-10*x^2)).
(End)
MATHEMATICA
rule=59; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]], {k, 1, rows}] (* Binary Representation of Rows *)
CROSSREFS
Sequence in context: A290725 A255966 A305396 * A303571 A303573 A050661
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 03 2016
EXTENSIONS
Removed an unjustified claim that Colin Barker's conjectures are correct. Removed a program based on a conjecture. - N. J. A. Sloane, Jun 13 2022
STATUS
approved