login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265845
Numbers that are sums of consecutive (positive) cubes in more than one way.
7
216, 8000, 33075, 64000, 89559, 105525, 164800, 188784, 189189, 216000, 343000, 353241, 443456, 608391, 1271600, 2370816, 3132116, 3132675, 3184236, 5821200, 5832000, 9018000, 9769375, 11437525, 20793591, 22153600, 24359616, 28685440, 35937000, 47651373
OFFSET
1,1
COMMENTS
A131643 (cubes that are also sums of three or more consecutive positive cubes) is a sparse subsequence: only 17 of its terms appear in the first 1000 terms of A265845. - Jonathan Sondow, Jan 10 2016
LINKS
EXAMPLE
a(1) = 216 = 6^3 = 3^3 + 4^3 + 5^3;
a(2) = 8000 = 20^3 = 11^3 + 12^3 + 13^3 + 14^3;
a(3) = 33075 = 11^3 + 12^3 + 13^3 + 14^3 + 15^3 + 16^3 + 17^3 + 18^3 + 19^3 = 15^3 + 16^3 + 17^3 + 18^3 + 19^3 + 20^3.
PROG
(Haskell)
import Data.Set (singleton, deleteFindMin, insert, Set)
a265845 n = a265845_list !! (n-1)
a265845_list = f (singleton (1, (1, 1))) 0 0 where
f s z z' = if y == z && z' /= z then y : f s'' y z else f s'' y z
where s'' = (insert (y', (i, j')) $
insert (y' - i ^ 3 , (i + 1, j')) s')
y' = y + j' ^ 3; j' = j + 1
((y, (i, j)), s') = deleteFindMin s
CROSSREFS
Subsequence of A217843; subsequences: A000578, A005898, A027602, A027603, A062682.
Supersequence of A131643.
Sequence in context: A017595 A232835 A223272 * A131643 A269139 A231319
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Dec 16 2015
STATUS
approved