login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265767
Numerators of upper primes-only best approximates (POBAs) to 5; see Comments.
6
11, 37, 67, 97, 157, 307, 337, 367, 397, 487, 547, 757, 787, 907, 967, 997, 1117, 1567, 1657, 1747, 1867, 1987, 2287, 2437, 2617, 2707, 2857, 2887, 3037, 3067, 3217, 3307, 3457, 3547, 3637, 3697, 3847, 4057, 4297, 4597, 4957, 4987, 5107, 5167, 5197, 5347
OFFSET
1,1
COMMENTS
Suppose that x > 0. A fraction p/q of primes is an upper primes-only best approximate, and we write "p/q is in U(x)", if p'/q < x < p/q < u/v for all primes u and v such that v < q, where p' is greatest prime < p in case p >= 3.
Let q(1) = 2 and let p(1) be the least prime >= x. The sequence U(x) follows inductively: for n >= 1, let q(n) is the least prime q such that x < p/q < p(n)/q(n) for some prime p. Let q(n+1) = q and let p(n+1) be the least prime p such that x < p/q < p(n)/q(n).
For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.
EXAMPLE
The upper POBAs to 5 start with 11/2, 37/7, 67/13, 97/19, 157/31, 307/61, 337/67, 367/73. For example, if p and q are primes and q > 19, and p/q > 5, then 97/19 is closer to 5 than p/q is.
MATHEMATICA
x = 5; z = 200; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265768/A265769 *)
Numerator[tL] (* A265766 *)
Denominator[tL] (* A158318 *)
Numerator[tU] (* A265767 *)
Denominator[tU] (* A023217 *)
Numerator[y] (* A222568 *)
Denominator[y] (* A265769 *)
KEYWORD
nonn,frac
AUTHOR
Clark Kimberling, Dec 19 2015
STATUS
approved