login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265766
Numerators of lower primes-only best approximates (POBAs) to 5; see Comments.
5
7, 13, 23, 53, 83, 113, 233, 263, 293, 353, 443, 503, 563, 653, 683, 743, 863, 953, 983, 1163, 1193, 1283, 1553, 1583, 1733, 1913, 2003, 2153, 2213, 2243, 2333, 2393, 2543, 2843, 2963, 3083, 3203, 3413, 3593, 3803, 3863, 4133, 4283, 4643, 4703, 4733, 5153
OFFSET
1,1
COMMENTS
Suppose that x > 0. A fraction p/q of primes is a lower primes-only best approximate, and we write "p/q is in L(x)", if u/v < p/q < x < p'/q for all primes u and v such that v < q, where p' is least prime > p.
Let q(1) be the least prime q such that u/q < x for some prime u, and let p(1) be the greatest such u. The sequence L(x) follows inductively: for n > 1, let q(n) is the least prime q such that p(n)/q(n) < p/q < x for some prime p. Let q(n+1) = q and let p(n+1) be the greatest prime p such that p(n)/q(n) < p/q < x.
For a guide to POBAs, lower POBAs, and upper POBAs, see A265759.
EXAMPLE
The lower POBAs to 5 start with 7/2, 13/3, 23/5, 53/11, 83/17, 113/23, 233/47. For example, if p and q are primes and q > 17, and p/q < 5, then 83/17 is closer to 5 than p/q is.
MATHEMATICA
x = 5; z = 200; p[k_] := p[k] = Prime[k];
t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *)
t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}];
d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *)
v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &];
b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &];
y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265768/A265769 *)
Numerator[tL] (* A265766 *)
Denominator[tL] (* A158318 *)
Numerator[tU] (* A265767 *)
Denominator[tU] (* A023217 *)
Numerator[y] (* A222568 *)
Denominator[y] (* A265769 *)
KEYWORD
nonn,frac
AUTHOR
Clark Kimberling, Dec 19 2015
STATUS
approved