OFFSET
0,3
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
LINKS
Robert Price, Table of n, a(n) for n = 0..999
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
FORMULA
Conjectures from Colin Barker, Dec 09 2015 and Apr 16 2019: (Start)
a(n) = 1/8*(10*n+3*(-1)^n-(1-i)*(-i)^n-(1+i)*i^n-1) where i = sqrt(-1).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>4.
G.f.: x*(1+2*x+2*x^3) / ((1-x)^2*(1+x)*(1+x^2)).
(End)
EXAMPLE
From Michael De Vlieger, Dec 09 2015: (Start)
First 12 rows, replacing "1" with "." for better visibility of OFF cells, with total number of 0's in the row to the right of the chart:
. = 0
. . 0 = 1
. 0 . 0 0 = 3
. . . . 0 0 0 = 3
. . . 0 . 0 0 0 0 = 5
. . 0 . . . 0 0 0 0 0 = 6
. 0 . . . 0 . 0 0 0 0 0 0 = 8
. . . . 0 . . . 0 0 0 0 0 0 0 = 8
. . . 0 . . . 0 . 0 0 0 0 0 0 0 0 = 10
. . 0 . . . 0 . . . 0 0 0 0 0 0 0 0 0 = 11
. 0 . . . 0 . . . 0 . 0 0 0 0 0 0 0 0 0 0 = 13
. . . . 0 . . . 0 . . . 0 0 0 0 0 0 0 0 0 0 0 = 13
(End)
MATHEMATICA
lim = 134; a = {}; Do[AppendTo[a, Take[#[[k]], 2 (k - 1) + 1]], {k, Floor[Length[#]/2]}] &@ CellularAutomaton[188, {{1}, 0}, lim]; Count[#, n_ /; n == 0] & /@ a (* Michael De Vlieger, Dec 09 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 08 2015
STATUS
approved