OFFSET
0,3
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
LINKS
Robert Price, Table of n, a(n) for n = 0..999
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
FORMULA
Conjectures from Colin Barker, Dec 09 2015 and Apr 16 2019: (Start)
a(n) = 1/16*(10*n^2+8*n+3*(-1)^n-2*(-i)^n-2*i^n+1) where i = sqrt(-1).
G.f.: x*(1+2*x+2*x^3) / ((1-x)^3*(1+x)*(1+x^2)).
(End)
EXAMPLE
From Michael De Vlieger, Dec 09 2015: (Start)
First 12 rows, replacing "1" with "." for better visibility of OFF cells,
followed by the total number of 0's per row, and the running total up to
that row:
. = 0 -> 0
. . 0 = 1 -> 1
. 0 . 0 0 = 3 -> 4
. . . . 0 0 0 = 3 -> 7
. . . 0 . 0 0 0 0 = 5 -> 12
. . 0 . . . 0 0 0 0 0 = 6 -> 18
. 0 . . . 0 . 0 0 0 0 0 0 = 8 -> 26
. . . . 0 . . . 0 0 0 0 0 0 0 = 8 -> 34
. . . 0 . . . 0 . 0 0 0 0 0 0 0 0 = 10 -> 44
. . 0 . . . 0 . . . 0 0 0 0 0 0 0 0 0 = 11 -> 55
. 0 . . . 0 . . . 0 . 0 0 0 0 0 0 0 0 0 0 = 13 -> 68
. . . . 0 . . . 0 . . . 0 0 0 0 0 0 0 0 0 0 0 = 13 -> 81
(End)
MATHEMATICA
lim = 104; a = {}; Do[AppendTo[a, Take[#[[k]], 2 (k - 1) + 1]], {k, Floor[Length[#]/2]}] &@ CellularAutomaton[188, {{1}, 0}, lim]; Accumulate[Count[#, n_ /; n == 0] & /@ a] (* Michael De Vlieger, Dec 09 2015 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 08 2015
STATUS
approved